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Abstract 

Submarine hydrothermal circulation has attracted much scientific interest since 

seafloor hydrothermal activity was first observed in the 1970s; an area of particular 

interest is the impact of exported inorganic and organic materials from hydrothermal 

vent systems into the open ocean. In 2007, the first active hydrothermal vent field, 

with vent fluid temperatures up to 379 °C, was discovered at the ultraslow spreading 

Southwest Indian Ridge (SWIR), where active vents are much less abundant than fast 

spreading ridges, and the effect of hydrothermal extrusion on surface sediments is not 

fully understood. To explore how geochemical proxy signatures respond to 

hydrothermal activity, we investigated the distributions of elements, minerals and 

lipids in surficial normal marine sediments, metalliferous sediments and 

low-temperature hydrothermal deposits collected from the SWIR. The results showed 
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different effects of hydrothermal activity on the surface deposits. The normal marine 

sediments were predominantly calcium carbonate characterized by >42% CaO 

and >90% calcite, with a significant autochthonous marine contribution to organic 

matter (OM) and a predominance of lower molecular weight alkanols and fatty acids; 

they were uninfluenced by hydrothermal activity but received some terrigenous input 

represented by abundant high molecular weight n-alkanes with an odd-over-even 

predominance. The near-field metalliferous sediments and hydrothermal deposits 

were very different. Some near-field metalliferous sediments were influenced by 

low-temperature hydrothermal activity, and their distributions of elements and 

minerals were similar to those of hydrothermal deposits, which were characterized by 

abundant Fe/Si and opal/nontronite. Other near-field metalliferous sediments were 

evidently influenced by mixing of high-temperature hydrothermal sulfides typically 

containing abundant Cu/Zn. With respect to the organic matter assemblages, 

near-field deposits contained little evidence for thermal maturation of organic matter 

and all were characterized by a strong microbial signature, including hopanoids, 

isoprenoidal and non-isoprenoidal dialkyl glycerol ether lipids, and low molecular 

weight n-alkanes with an even carbon number predominance. The far-field 

metalliferous sediments, despite the influence of non-buoyant plumes and slightly 

higher concentrations of hydrothermal-derived metals (e.g., Fe, Cu and Zn), had the 

same distribution of organic lipids and major mineral composition (>90% calcite) as 

did normal marine sediments. Thus, the influence of non-buoyant plume inputs 

appears to have been minimal possibly due to the dilution of in situ microorganisms 



 

 

by normal marine organisms in sediment and seawater. Furthermore, these 

characteristics indicate inorganic indices based on abundant metal elements derived 

from the hydrothermal systems (such as Fe/Cu/Zn content, ∑REE/Fe, the ternary 

diagram of Fe, Cu×100 and Ca) are more sensitive, serving as better proxies than 

organic matter assemblages to differentiate the effects of diverse hydrothermal 

activity on surface deposits. 

Keywords: element; mineral; lipid biomarker; in situ microorganisms; hydrothermal 

activity; Southwest Indian Ridge 

 

1. Introduction 

Hydrothermal circulation, a common process along mid–ocean ridges, plays an 

important role in global ocean cycles via significant inputs of reduced substrates, such 

as H2S, H2, CH4, NH3, Mn2+ and Fe2+, which can fuel chemosynthetic microbial 

metabolism (e.g., de Angelis et al., 1993; Elderfield and Schultz, 1996; McCollom, 

2000; Lam et al., 2004; Dick et al., 2009; Petersen et al., 2011; Dick et al., 2013), and 

even be a significant source of carbon to the deep ocean (e.g., McCollom, 2000; Lang 

et al., 2006; McCarthy et al., 2011). Previous hydrothermal studies have mainly 

focused on near-field hydrothermal products, such as sulfide structures (e.g., Kato et 

al., 2010; Peng et al., 2011b; Jaeschke et al., 2012; Gibson et al., 2013; Reeves et al., 

2014), hydrothermally influenced sediments (e.g., Schouten et al., 2003; Shulga et al., 

2010; Shulga and Peresypkin, 2012), and rising plumes (e.g., Bennett et al., 2011; 

Sands et al., 2012; Estapa et al., 2015), in relation to the characteristics of inorganic 



 

 

(elements and minerals) and organic (lipids) geochemistry, biogeography and 

biodiversity. However, a growing number of studies have focused on the microbial 

ecology and biogeochemical cycles involving the transport of metals and organic 

carbon in non-buoyant plumes (e.g., Bennett et al., 2008; Bennett et al., 2011; 

Lesniewski et al., 2012; Sylvan et al., 2012; Li et al., 2015; Sander and Koschinsky, 

2016). Of particular interest has been hydrothermally derived dissolved Fe, which can 

be dispersed over thousands of kilometers away from its source into the open ocean 

and contribute to the global oceanic Fe budget (e.g., Toner et al., 2012; Fitzsimmons 

et al., 2014, 2017; Resing et al., 2015; Kleint et al., 2016). However, the geochemical 

characteristics of the sediments influenced by such non-buoyant plumes remain 

largely unstudied. 

Low-temperature hydrothermal systems with formation temperatures of <100 °C 

had previously been largely ignored but have recently become research hotspots. 

Relatively recent investigations of such settings have focused on biogeochemical 

cycling mechanisms of Fe, Mn, and S (e.g., Butterfield et al., 2004; Perner et al., 2007; 

Edwards et al., 2011; Sun et al., 2011, 2013, 2015) and the microbial ecology and 

biogeochemistry of low-temperature hydrothermal environments (e.g., Edwards et al., 

2011; Peng et al., 2011a; Li et al., 2012; Li et al., 2013). These have confirmed that 

low-temperature settings have geochemical characteristics and microbial communities 

distinct from those of high-temperature hydrothermal systems (e.g., Blumenberg et al., 

2012; Jaeschke et al., 2012; Gibson et al., 2013; Reeves et al., 2014). 

Increasing attention is being paid to hydrothermal fields at the ultraslow 



 

 

spreading Southwest Indian Ridge (SWIR) because more hydrothermal vents 

(including high-temperature and low-temperature hydrothermal fields) than expected 

were discovered since 2007 (e.g., Fujimoto et al., 1999; Münch et al., 2001 ; Bach et 

al., 2002; German, 2003; Tao et al., 2007, 2012), and there have been some reports on 

the petrology and element geochemistry (e.g., Tao et al., 2011, 2012; Cao et al., 2012; 

Gao et al., 2016; Li et al., 2016b) and molecular biology (e.g., Peng et al., 2011a; Li et 

al., 2013; Cao et al., 2014; Li et al., 2016a). However, research on lipid biomarkers in 

the SWIR hydrothermal systems remains rare (Huang et al., 2014; Lei et al., 2015). 

There are also relatively few studies on the effects of hydrothermal activity on the 

surrounding environment, especially the metalliferous sediments (Pan et al., 2016) 

formed via a combination of sulfide mass wasting and debris flow, low-temperature 

fluid flow and mineralization, or plume formation, dispersal and fallout (Dias et al., 

2008). 

The surface deposits (0-10cm) studied in this paper, including normal pelagic 

sediment, far-field and near-field metalliferous sediments, and low-temperature 

hydrothermal deposits, were collected from the first discovered active hydrothermal 

vent field, the Dragon Vent Field (49°39′ E, 37°47′ S), a nearby inactive field (50°28′ 

E, 37°39.50′ S) and surrounding areas (Fig. 1 and Supporting Information Table S1) 

during the DY115-20 and DY115-21 expeditions of the R/V Da Yang Yihao in 2009 

and 2010, by using a television-video guided grab. These three distinct surface 

deposits provide an opportunity to explore the potential effects of hydrothermal 

activity on the surrounding sediments. Our previous study examining the distribution 



 

 

of glycerol dialkyl (and monoalkyl) glycerol tetraether (GDGT and GMGT) archaeal 

membrane lipids (Pan et al., 2016) clearly showed that GDGT distributions in normal 

marine sediments, near-field metalliferous sediments and low-temperature 

hydrothermal deposits vary significantly, whereas the far-field metalliferous 

sediments have the same GDGT distribution as that of the background sediments. 

Here, we present new comprehensive data of mineralogy, element geochemistry and 

other lipid biomarkers (alkanes, hopanoids, alkanols and fatty acids) to explore further 

how hydrothermal activity affects the (inorganic and organic) geochemistry of the 

surrounding sediments and to broaden the understanding of hydrothermal circulation 

and the roles of microorganisms in biogeochemical cycling at the SWIR.  

 

2. Methods 

2.1. Elemental and mineral analysis 

Major and trace elements were analyzed in the State Key Laboratory of Marine 

Geology, Tongji University. The freeze-dried deposit samples were ground into 

powder, then combusted in a muffle furnace at 600 °C for 4 h to oxidise the OM. 30 

to 50 milligrams of combustion products were then digested with concentrated HNO3 

and HF, and this was followed by heating at 150 °C for 24 h. The digests were then 

evaporated to dryness (×2). Samples were diluted with 2% HNO3 before analysis. The 

concentration of major and trace elements was determined via Inductively Coupled 

Plasma-Optical Emission Spectrometry (ICP-OES, Thermo fisher IRIS Advantage) 

and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS, Thermo fisher VG-X7 



 

 

mass spectrometer), respectively. The precision and accuracy were monitored by 

replicate analyses of geostandards GSR-5, GSR-6, and GSD-9, and the relative 

deviations between the measured and certified values were less than 5% for most 

elements.  

For mineral analysis, the X-ray diffraction (XRD) pattern analysis of powdered 

samples was performed at the Guangzhou Institute of Geochemistry, Chinese 

Academy of Sciences (CAS), by using an X-ray diffractometer (Bruker-D8 Advance, 

German) with a Ni-filtered Cu Kα radiation source at 40 kV and 30 mA. Diffraction 

angles (referred to as “2θ”) ranged from 3‒85°. The scan speed was 4°/min. 

Qualitative and semi-quantitative characterization of mineralogy and other details 

have been presented in He et al. (2010). 

 

2.2. Lipid biomarker analysis 

Two methods were used successively for different samples and have been 

described in detail in Pan et al. (2016). Because GDGTs analyzed by 

high-performance liquid chromatography/atmospheric pressure chemical ionization- 

mass spectrometry (HPLC/APCI-MS) exhibit distinct differences among sediment 

types (Pan et al., 2016), other lipid biomarkers were examined here to further explore 

differences.  

Briefly, the total lipid extracts obtained were separated into three fractions: 

simple core lipids (CLs), glycolipids (GLs) and phospholipids (PLs). Metalliferous 

sediments (M-T2 and M-T3) and hydrothermal deposits were processed with method 



 

 

1, which used a Bligh-Dyer extraction (Bligh and Dyer, 1959) and fractionation 

protocol based on that in Dickson et al. (2009), in which chloroform:acetic acid 

(100:1, v:v), acetone and methanol were used to recover each respective fraction 

through a silica column. The CL fraction was eluted through another silica column 

with chloroform saturated with ammonium hydroxide and chloroform:acetic acid 

(100:1, v:v) to separate neutral components and free fatty acids (FFAs), respectively. 

Method 2 used ultrasonication (Schouten et al., 2002) and a fractionation protocol 

detailed in Pitcher et al. (2009), and the elution solvents hexane:ethyl acetate (3:1, 

v:v), ethyl acetate and methanol were used for passing each respective fraction 

through a silica column; this method was used for the background sediments and 

M-T1. For both methods, the GL and PL fractions were hydrolyzed and heated at 

100 °C for 3 h with 5% HCl in methanol.  

Although these two protocols yield reproducible GDGT distributions, allowing a 

comparison of those compounds for the entire sample set (Pan et al., 2016), the 

recovery and separation of bacterial and eukaryotic lipids between them might not be 

consistent. Therefore, we focus on 1) a qualitative comparison of neutral lipid 

distributions across all samples (i.e. those eluted in the CL fraction of Method 2 or 

the neutral lipid fraction of Method 1); and 2) a semi quantitative comparison of fatty 

acid distributions in MT1and background sediments (all processed using Method 2). 

Gas chromatography-mass spectrometry (GC-MS) analysis was performed at the 

Organic Geochemistry Unit (OGU), School of Chemistry, University of Bristol, with 

instrument conditions as follows: ThermoQuest Trace GC interfaced to Finnigan 



 

 

Trace MS quadrupole spectrometer, electron impact ionization (70 eV), full scan 

mode (m/z 50-650), HP-1 capillary column (50 m × 0.32 mm i.d.; 0.17 μm film 

thickness), He carrier gas. Samples were derivatized with N, O-Bis(trimethylsilyl) 

trifluoroacetamide (BSTFA, Sigma Aldrich) at 70 °C for 1 h before GC-MS analysis 

and injected at 70 °C with a temperature program of 20 °C/min to 130 °C and 

4 °C/min to 300 °C (held 25 min). The internal standards for apolar and polar 

components in the neutral fraction were 5α-androstane and hexadecane-2-ol, 

respectively. 

 

3. Results 

3.1. Bulk Geochemistry and Mineralogy 

There were significant differences in the elemental and mineral compositions of 

the different surface deposits (shown in Table 1 and Supporting Information Table S1). 

Although we determined abundances of numerous elements, here we initially focus on 

Fe, Cu and Ca to distinguish the surface deposits into major groups (Fig. 2). We focus 

on Fe because solubilized hydrothermal Fe can be transported kilometers away from 

vent sites (Toner et al., 2012; Fitzsimmons et al., 2014; Resing et al., 2015; Kleint et 

al., 2016). Hydrothermally sourced elemental Cu is often enriched in 

high-temperature hydrothermal products and falls out of the plume more rapidly than 

Fe (Cave et al., 2002). We consider Cu and Fe relative to Ca, because background 

sediments of the SWIR are dominated by calcium carbonate deposition. All studied 

samples were classified into three categories (Fig. 2):  



 

 

 (1) Pelagic sediments far from hydrothermal vents (termed background 

sediments): these samples were characterized by CaO as the major element (44% 

average), and low abundances of of Al, Fe, K, Mg, Mn, Na, P and Ti (Table 1). 

Although biophile elements, such as Ba and Sr, had markedly high abundances (290 

ppm and 1400 ppm on average, respectively), other trace elements (e.g., V, Cr, Co, Ni, 

Cu, Zn, Mo and Pb) occurred in only very low abundances. Calcite is the major 

mineral (>90%) in these samples. 

(2) Metalliferous sediments: these samples were divided into three subtypes. 

Metalliferous type 1 sediments (M-T1, far-field product), including SW2, SW3 and 

SW4 located near the Dragon Vent Field and SW10 located close to the inactive field, 

contained slightly higher abundances of Al, Ti, Fe, V, Cr, Ni, Cu and Zn relative to 

background sediments (Fig. 3a), although they were still dominated by Ca as the 

major element and calcite as the major mineral. In contrast, other metalliferous 

sediments (near-field product) had higher Fe, Mn, Na, P, V, Co, Ni, Cu, Zn and Mo 

contents and a lower Ca content. These samples were divided into two further types: 

metalliferous type 2 sediments (M-T2, samples SW32, SW38 and SW39) and 

metalliferous type 3 sediments (M-T3, samples SW35 and SW40). These were 

distinguished on the basis of mineralogy, with M-T2 sediments containing nontronite 

and two-line-ferrihydrite and lower Al, Ti and Cr contents (Fig. 3b), and M-T3 

sediments containing abundant Fe, Mn, Cu and Zn (Fig. 3c; with Cu especially high 

up to 11000 ppm). Of the M-T3 sediments, SW35 was composed of calcite and 

aragonite, and SW40 was composed of goethite and illite/smectite, showing distinct 



 

 

mineral compositions from those of M-T2. 

(3) Hydrothermal deposits enriched in Fe and/or Si: compared with the 

concentrations in background sediments, the Al, Ti, Cr, Ni and Ca contents were 

much lower, and the P, V, Mn, Fe, Cu, Zn and Mo contents were higher (Fig. 3d, 

Table 1). Although the Si content was not directly measured in these hydrothermal 

deposits, Si is known to be another important major element in these hydrothermal 

deposits because of the mineral composition (mainly opal and nontronite) and 

concentrations of Si (22–89%) in deposits from the same sites (SW33, SW35, SW36) 

are high (Peng et al. (2011a) and Li et al. (2013)). 

The distribution of rare earth elements (REE) varied among these samples. The 

total REE content (ΣREE) was highest in background sediments, with a range of 

13–41 ppm (24 ppm average), and most metalliferous sediments (M-T1, M-T2 and 

M-T3), with a similar range of 18 to 31 ppm. The total REE content was lowest in 

hydrothermal deposits, at 0.66–8.2 ppm (3.6 ppm average) (Table 1). All sediments 

exhibited a characteristic enrichment of light REE (LREE) and a relative depletion in 

heavy REE (HREE), but had different LREE/HREE values, with ranges of 3.6–5.4, 

2.8–3.5, 1.7–3.1, 2.4–3.3 and 1.7–7.6 in background sediments, M-T1, M-T2, M-T3 

and hydrothermal deposits, respectively (Supporting Information Table S1). 

North American shale composite-normalized REE distribution patterns of surface 

deposits showed the same characteristics of a left-leaning LREE and a relatively flat 

HREE but had different Ce and Eu anomalies (Fig. 4, Table 1 and Supporting 

Information Table S1). Weak-moderate negative Ce anomalies were present in most 



 

 

samples, with δCe exhibiting ranges of 0.48–0.83, 0.57–0.82, 0.39–0.73, 0.54–0.72 

and 0.34–1.0 for background sediments, M-T1, M-T2, M-T3 and hydrothermal 

deposits, respectively; there were generally no anomalies in Eu for background 

sediments and M-T1 (δEu=1.1–1.4 and 1.2–1.4, respectively), but positive Eu 

anomalies occurred in M-T2 and M-T3 (δEu=1.3–7.9 and 1.5–1.8, respectively), and 

especially in hydrothermal deposits (δEu= 3.1–56). 

 

3.2. Distributions of biomarkers in background sediments and M-T1 

In contrast to elemental compositions, there were no significant distinctions in 

organic lipid compositions between background sediments and M-T1 (Table 2), a 

result similar to the GDGT compositions discussed in Pan et al. (2016). Among the 

‘neutral lipids’ of both background sediments and M-T1, high molecular weight 

(HMW) n-alkanes (n-C22–n-C34) were dominant (range 68%–86%) and characterized 

by an odd-carbon predominance with the carbon preference index (CPI, defined by 

Bray and Evans, 1961) values in the range of 1.0 to 4.5, peaking at n-C31. The average 

chain length (ACL) of total n-alkanes ranged from 25 to 28. The average values of 

HMW proportions, CPI and ACL for background sediments were 79%, 2.8 and 27, 

respectively, which were very similar to those of M-T1 (82%, 3.0 and 27, 

respectively). Long chain C37–C39 unsaturated methyl and ethyl ketones were found in 

both M-T1 and background sediments, such as 37:3, 37:2, 38:3 and 38:2 methyl 

alkenones, 38:3 and 38:2 ethyl alkenone, which were derived from marine 

phytoplankton, especially Coccolithophores, and used to reconstruct past sea-surface 



 

 

temperature (Brassell et al., 1986). 

The distribution of n-alkanols in M-T1 and background sediments was typical 

for pelagic sediments as well, dominated by low molecular weight (LMW) 

compounds (n-C12–n-C21) with LMW to HMW ratios (n-C21
-/n-C22

+) in the range 

from 3.3 to 20, peaking at n-C18. The most abundant sterol detected was cholesterol, 

generally considered to be mainly derived from marine zooplankton and only minor 

from phytoplankton (Volkman, 1986). A few of other sterols (e.g., sitosterol, found in 

higher plants, Goad and Goodwin, 1972) and very low abundances of stanols can be 

identified. 

The fatty acid (FA) distributions – in all three fractions – did not differ between 

M-T1 and background sediments (See Fig. 5). This is true even for the phospholipid 

fatty acids (PLFAs) which might have been expected, as biomarkers for ‘living 

biomass’, to have been impacted by the metal inputs. For both free fatty acids (FFAs) 

and PLFAs, M-T1 and background sediments were dominated by saturated fatty acids 

(SFAs, >90%), with a slightly higher proportion of monounsaturated fatty acids 

(MUFAs) than branched fatty acids (BrFAs). The glycolipid fatty acids (GLFAs), 

were dominated by MUFAs (>60%) in both sediment types, followed by SFAs, and 

lower proportions of BrFAs and polyunsaturated fatty acids (PUFAs).  

The SFAs, like the n-alkanols, were dominated by lower molecular weight fatty 

acids in each fraction (C9–C21, a maximum at n-C16:0, Fig. 5; LMW to HMW 

ratios >>1, Table 2). The BrFAs were mainly brC15, brC16 and brC17, including the iso 

and anteiso components. It is noteworthy that the near-field metalliferous sediments 



 

 

and hydrothermal deposits had greater abundance of BrFAs derived from bacteria than 

M-T1 and background sediments as mentioned in Pan et al. 2016. C18:1ω9 was the 

dominant MUFA in both the FFA and PLFA fractions, whereas C18:1ω9 and C22:1 were 

the major MUFAs in GLFAs (Fig. 5), with minor contributions from C16:1ω7, C20:1 and 

C24:1 MUFAs.   

 

3.3. Specific biomarker compositions in near-field metalliferous sediments and 

hydrothermal deposits  

In our previous study (Pan et al., 2016), we showed that the GDGT compositions 

of near-field metalliferous sediments (M-T2 and M-T3) and hydrothermal deposits are 

markedly different from those in background sediments and M-T1, and are 

characterized by high relative abundances of isoprenoid GDGTs bearing multiple 

rings, the presence of GMGTs, and relatively low abundances of crenarchaeol. Here, 

we probe those differences further by examining the distributions of alkanes, 

hopanoids and alcohols found in this study (Table 3). We note that although different 

lipid analysis methods have been used, there is no evidence that they have affected the 

distributions of these specific compound classes. 

Among the n-alkanes, M-T2 and M-T3 sediments were characterized by LMW 

homologues with an even-over-odd carbon number predominance (n-C16, n-C18 and 

n-C20), showing lower values of HMW percent (30%–39%, 35% average), CPI 

(0.41–1.0, 0.71 average) and ACL (18–20, 19 average). We observed the same for 

hydrothermal deposits SW31, SW33, SW36 and SW37, with ranges of 33%–50% 



 

 

(41% average), 0.24–0.80 (0.53 average) and 20–21 (21 average) for HMW percent, 

CPI and ACL, respectively, although n-alkanes were nearly undetected in 

hydrothermal deposits SW41, SW45 and SW46 (Table 3). This differs markedly with 

the distributions in M-T1 and background sediments, dominated by HMW n-alkanes 

of likely higher plant origin (Eglinton and Hamilton, 1967; see above).   

We did not analyse intact bacteriohopanepolyols and focus here on the hopanoids 

present in the core lipid fraction; these include the geohopanes potentially formed by 

thermal alteration of bacterial biomass (Simoneit et al., 2004) and biological 

hopanoids, such as diploptene (Ⅰ, all chemical structures are shown in the Appendix; 

de Rosa et al., 1971; Rohmer et al., 1984), diplopterol (Ⅱ; Rohmer et al., 1984; 

Pancost et al., 2000) and 17β,21β(H)-bishomohopan-32-ol (which likely derives from 

degradation of bacteriohopanetetrol; Farrimond et al., 2000). In the M-T1 and normal 

marine sediments, hopanoids were present in only trace abundances. However, in the 

M-T2 and M-T3 sediments as well as the hydrothermal deposits (except for SW36 

and SW37, Table 3), hopanoids were abundant. Immature hopanoids dominated, 

including trisnorhopan-21-one ( Ⅲ ), 17β,21β(H)-hopan-30-ol ( Ⅳ ) and 

17β,21β(H)-bishomohopan-32-ol, all of which are likely oxidation/cleavage products 

from bacteriohopanepolyol precursors (Simoneit et al., 2004). Also present, although 

in subordinate abundances, were diploptene and diplopterol, derived from various 

bacteria (de Rosa et al., 1971; Rohmer et al., 1984; Pancost et al., 2000). Similarly, 

the geohopanes predominantly occurred as the immature isomers – 

17β,21β(H)-hopanes (Ⅴ).  



 

 

However, more thermally mature hopanes, including both moretanes 

[17β,21α(H)-hopanes, Ⅵ ] and lesser amounts of the thermally favoured 

17α,21β(H)-hopanes (Ⅶ) were also present (except for SW39). During hydrothermal 

maturation, hopanoids can isomerize, converting the 17β,21β(H) configuration 

of >C31 hopane homologues into the more thermally stable 17α,21β(H) configuration. 

Similarly, epimerisation at the C-22 position results in a mixture of S and R epimers 

(22S)/(22S+22R), ultimately reaching the equilibrium ratio of about 0.6 (Seifert and 

Moldowan, 1978). The homohopane epimer ratios in the studied samples ranged 

between 0.41 and 0.52, not fully mature as observed in other hydrothermal settings 

(e.g., Rushdi and Simoneit, 2002; Simoneit et al., 2004; Lei et al., 2015) but 

indicating some hydrothermal alteration.  

Perhaps most striking, non-isoprenoidal dialkyl glycerol diethers (DGDs, Ⅷ), 

macrocyclic glycerol diethers (McGDs, Ⅸ), and archaeol (Ⅹ, discussed in Pan et al., 

2016) were detected in M-T2 and M-T3 sediments and hydrothermal deposits (Table 

3) but not in M-T1 and normal marine sediments. The alkyl chains of DGDs ranged in 

carbon number from C13 to C19, including a predominance of C15/C15 or C17/C17, and 

the alkyl chain of the McGDs ranged from C31 to C35. This provides strong evidence 

that hydrothermal processes have impacted the microbial assemblages in near-field 

sediments, with likely source organisms discussed below. 

 

4. Discussion 

Hot fluids, emitted from hydrothermal vents, can rise hundreds of meters into the 



 

 

overlying water column through buoyancy; when the water reaches a density identical 

to that of the background seawater, the plume becomes non-buoyant and spreads 

laterally. This not only transports inorganic chemical components to the background 

seawater around hydrothermal vents (e.g., Fe, Mn, Cu, Zn, Cave et al., 2002) but also 

microorganisms and biogenic and abiogenic OM (see review by Konn et al., 2011). 

Here we explore how the plume from the hydrothermal fields of the SWIR impacted 

both metal and organic matter in near-field (<0.1 km) and more distal sediments (~0.8 

km). 

 

4.1. Distinct inorganic compositions of surface deposits clearly reflect different effects 

of hydrothermal activity  

The ternary diagram of Fe, Cu×100 and Ca distinguishes all of the surface 

deposits into three categories: background sediment, metalliferous sediments (further 

divided into M-T1, M-T2 and M-T3 subtypes) and low-temperature hydrothermal 

deposits (Fig. 2). Each category and subtype has specific elemental and mineral 

compositions.  

The hydrothermal and detrital contributions to sediments can be estimated from 

the ratios of Fe/Ti vs Al/(Al+Fe+Mn) (Boström et al., 1973; Dias and Barriga, 2006; 

Slack et al., 2009). In Fig. 6, all hydrothermal deposits should lie on the theoretical 

curve, and the increase in Al/(Al+Fe+Mn) and decrease in Fe/Ti along that curve 

indicates the dilution of metalliferous sediments with pelagic sediments. The 

background sediments had Al/(Al+Fe+Mn) ratios greater than 0.4 (the minimum 



 

 

value in pelagic deep-sea sediments, Boström et al., 1973); moreover, the Fe, Mn, Cu 

and Zn contents were low, and the REE distribution was similar to that of seawater, 

with negative Ce anomalies (Fig. 4a), all indicating that the background sediments 

were scarcely affected by hydrothermal activity. The mineral calcite and the element 

Ca were dominant in background sediments, thus suggesting that dissolution of 

deep-sea carbonate was not occurring and consistent with sediments being above the 

carbonate compensation depth (>5000 m, Van Andel, 1975). These biogenic calcites 

were comprised of calcareous nannofossils and foraminifera (Chen et al., 2013), and a 

similar composition has been found in sediments from the Central Indian Ocean 

(Littke et al., 1991). 

The Fe/Ti ratios in hydrothermal deposits (or Fe-Si oxide precipitates) from the 

SWIR were much larger than those in other sediments, whereas Al/(Al+Fe+Mn) ratios 

were lower, lying on the theoretical curve of hydrothermal sources (Fig. 6). The 

hydrothermal deposits also showed significant positive Eu anomalies and moderately 

weak negative Ce anomalies (Fig. 4e), with low REE content, thus indicating that 

these samples inherited the characteristics of hydrothermal fluid and were less 

influenced by seawater and the mixing of background sediments. Previous studies 

have shown that Fe-Si oxide precipitates are easily formed at relatively low 

temperatures (<100 °C) in chimney structures and under diffuse flow conditions and 

are composed of amorphous silica and poorly crystalline phases, especially 

ferrihydrite, as well as crystalline iron-rich silicates, such as nontronite (Sun et al., 

2011, 2012, 2013). These minerals were also abundant in the hydrothermal deposits 



 

 

from the SWIR. Li et al. (2013), using the oxygen isotopic compositions of 

amorphous silica in some of these hydrothermal deposits (SW33 and SW36), 

concluded that the formation temperature ranged from 38 to 82 °C, confirming that 

these hydrothermal deposits were largely formed through low-temperature 

hydrothermal activity. The enrichment of Fe, Si and P might be related to the presence 

of Fe-oxidizing bacteria (FeOB), as suggested by SEM analysis of Fe-Si 

oxyhydroxide deposits elsewhere in the SWIR (Sun et al., 2015).  

The SWIR metalliferous sediments, based on their elemental and mineral 

composition, span the range between the background and hydrothermal end-members. 

The Fe/Ti and Al/(Al+Fe+Mn) ratios, δCe, δEu, Ca content, ∑REE and the REE 

distribution pattern (Fig. 4b) in M-T1 sediments were very similar to those in 

background sediments. However, the abundance of elements typically enriched in 

hydrothermal plume particles (e.g., Fe, Cu, Zn, P, V; Cave et al., 2002), was relatively 

high in M-T1 sediments, indicating that they were influenced by fallout from 

hydrothermal plumes originating in the nearby hydrothermal fields. ∑REE/Fe can be 

used as a relative measure of paleodistance between the location of the hydrothermal 

vent and the site of the plume fallout to sediments and to show the relative strength of 

the effects of hydrothermal activity (Ruhlin and Owen, 1986). The ∑REE/Fe ratios in 

M-T1 were between those of background sediments and other metalliferous sediments 

(Table 1 and Supporting Information Table S1), consistent with M-T1 sediments 

being located far from the hydrothermal vent and experiencing weak effects of 

hydrothermal activity (non-buoyant plume) and a strong influence from seawater 



 

 

(German et al., 1990; German et al., 1999). 

Compared with background sediments and M-T1, the near-field metalliferous 

sediments (M-T2 and M-T3) were strongly affected by hydrothermal activity. They 

contained more Fe, Mn, Cu, Zn and Mo, and less Ca and Sr, similar to the 

hydrothermal deposits (Noll et al., 1996; Cave et al., 2002), and were generally 

located near the hydrothermal end-member in Fig. 6; however, M-T2 and M-T3 

sediments had less positive Eu anomalies and higher ∑REE content than SWIR 

hydrothermal deposits (Fig. 4c, 4d and Table 1). The mineral compositions of the 

M-T2 sediments (nontronite and two-line-ferrihydrite) were analogous to those of the 

low-temperature hydrothermal deposits, clearly indicating the major effects of 

low-temperature hydrothermal activity, such as low-temperature fluid flow and 

mineralization (e.g., Metz et al., 1988; German et al., 1993; Mills and Elderfield, 

1995). M-T3 sediments (SW40 and SW35) had different mineral compositions and 

the highest Fe, Mn, Cu and Zn contents of all studied samples; this was especially true 

for Cu, which can rapidly fall out of plumes as sulfides or high-temperature 

hydrothermal products (Cave et al., 2002). Therefore, M-T3 sediments appear to have 

been formed by sulfide mass wasting and debris flow (Dias et al., 2008). Though the 

Al/(Al+Fe+Mn) ratio in SW35 was larger than that in other metalliferous sediments, it 

was still below 0.4 (Boström et al., 1973; Dias and Barriga, 2006). Moreover, the high 

calcite contents could indicate a higher proportion of background sediment mixing at 

SW35 compared with other metalliferous sediments.  

 



 

 

4.2. The effect of a non-buoyant plume on the organic composition of surface deposits 

Based on inorganic geochemical results, M-T1 appears to have been affected by 

a non-buoyant plume. Previous studies have indicated that particle organic carbon 

(POC) concentrations are elevated within hydrothermal plumes compared with 

background seawater (e.g., Bennett et al., 2011; German et al., 2015); thus, it is 

expected that M-T1 should have exhibited some differences in OM composition from 

background sediments. 

However, all of the new biomarker analyses reported here, across multiple 

compound classes and diverse organic matter fractions, failed to reveal significant 

differences between M-T1 and background sediments. These results are the same as 

our previous research of GDGTs distribution (Pan et al., 2016). Li et al. (2016a) also 

reported no significant differences in the microbial compositions between far-field 

non-buoyant plumes (nearly co-located seawater samples of SW2, SW3 and SW4 of 

M-T1) and ambient seawater at the SWIR. Moreover, similar results have also been 

found in the Guaymas Basin and Eastern Lau Spreading Centers (ELSC) 

hydrothermal plumes (Lesniewski et al., 2012; Sheik et al., 2015). Therefore, we 

suggest that in these cases, the hydrothermal plume exerts a modest or no impact on 

far field organic matter assemblages, due to the lack of distinctive microbial 

communities thriving in the plume itself.  

The same lipid compositions between M-T1 and background sediments suggest 

the same major sources of organic matter. The n-alkanes are dominated by HMW with 

larger ACL values (>25) and have an odd carbon dominance with average CPI>2 – 



 

 

similar to n-alkane distributions in sediments from the Central Indian Ocean (Littke et 

al., 1991) and the South East Indian Ridge (Kim et al., 2009). This suggests the input 

of terrigenous higher plant (leaf wax) material to our study sites. However, 

terrigenous OM inputs were generally low due to the remoteness from any landmass 

(Pan et al., 2016). The low abundances of branched GDGTs in these sites (Pan et al., 

2016), which are typically attributed to fluvially transported soil OM (Schouten et al., 

2013 and references therein), are more likely caused by aeolian transport due to the 

sites far away from the land (Fietz et al., 2013). Compared with the low abundances 

of branched GDGTs, the contents of HMW n-alkanes derived from long distance 

aeolian transport (e.g., Poynter et al., 1989; Simoneit et al., 1991) are relatively higher, 

which has been documented by Fietz et al. (2013). The presence of low molecular 

weight alkanols and FAs, and especially BrFAs and unsaturated FAs, provides 

evidence for additional sources of organic matter, including both algal contributions 

and sedimentary bacteria (Dai and Sun, 2007 and references therein). The 

compositions of long chain unsaturated alkenones and dominant cholesterol reflect the 

contribution of phyto- and zooplankton communities to sedimentary OM.  

 

4.3. Impact of hydrothermal activity on organic matter in near-field sediments 

In contrast to far-field sediments, organic matter in the near-field deposits (M-T2 

and M-T3 sediments) were strongly affected by indigenous chemosynthetic 

contributions to OM, with features similar to those of the low-temperature 

hydrothermal deposits at the SWIR. This is evident from previously reported 



 

 

tetraether lipid distributions (Pan et al., 2016), which were characterized by GDGTs 

bearing elevated numbers of cyclopentyl moieties and the unusual presence of 

GMGTs. Our new data reinforces that interpretation.  

The hydrocarbon fractions of these samples were dominated by LMW, even 

carbon number n-alkanes (C16, C18 and C20), similar to a distribution observed in 

oxy-altered sulfides from the SWIR (Lei et al., 2015) and likely indicative of a strong 

contribution of bacteria to sedimentary OM (Nishimura and Baker, 1986; Mille et al., 

2007). Second, the sediments contained abundant bacterially derived hopanoids 

(Simoneit et al., 2004), although their greater abundance here compared to 

background sediments likely reflects both greater bacterial production but also 

hydrothermal alteration of bacteriohopanepolyols (see below). 

Most diagnostic for the microbial assemblages in the M-T2, M-T3 and low- 

temperature hydrothermal deposits are the DGDs, major membrane lipids of some 

thermophilic bacteria, such as Thermodesulfobacterium commune (Langworthy et al., 

1983), Aquifex pyrophilus (Huber et al., 1992), other Aquificales (Jahnke et al., 2001), 

and Ammonifex degensii (Huber et al., 1996). DGDs have also been detected in some 

non-thermophilic sulfate-reducing bacteria (SRB), such as Desulfosarcina variabilis 

and Desulforhabdus amnigenus (Rütters et al., 2001), as well as some species 

involved in anaerobic oxidation of methane (AOM) (Pancost et al., 2001; Elvert et al., 

2005; Niemann and Elvert, 2008). Because Aquificales was absent in samples from 

the same sites at the SWIR (Peng et al., 2011a; Li et al., 2013) and the alkyl units of 

DGDs (C13-C19) in our samples were lower than those of Aquificales (C17-C21) 



 

 

(Jahnke et al., 2001), we discount that as a potential source. However, DGDs could 

have been derived from relatively abundant sulfate reducing δ-proteobacteria in these 

samples (Peng et al., 2011a; Li et al., 2013), similar to the inferred source in carbonate 

chimney structures at the Lost City hydrothermal field of the Mid-Atlantic Ridge 

(Bradley et al., 2009). Additionally, we cannot preclude contributions from other 

organisms, including thermophiles (e.g., Pancost et al, 2005, 2006; Kaur et al., 2008, 

2011, 2015) or Planctomycetes (the latter having been detected here, Li et al., 2013, 

and a potential producer of DGDs, Sinninghe Damsté et al., 2002).  

Also present were the even less common non-isoprenoidal McGDs. These were 

detected in some metalliferous sediments and low-temperature hydrothermal deposits 

from the SWIR, where there distributions were similar to those from New Zealand 

geothermal sinters (Pancost et al., 2006) and hydrothermal sulfides from the 

Mid-Atlantic Ridge (Blumenberg et al., 2007). The biological source of 

non-isoprenoid McGDs is still unclear, but an extremophilic bacteria source has been 

suggested (thermophilic and/or halophilic, Baudrand et al., 2010).  

In addition to being distinguished from background sediments by the presence of 

a stronger and unique bacterial and archaeal biomarker signature, near-field 

metalliferous sediments could contain biomarkers impacted by hydrothermal 

alteration. One potential indicator is the n-alkane CPI (<1.0), as noted in previous 

studies, including the Middle Valley at the Juan de Fuca Ridge (Rushdi and Simoneit, 

2002), the Rainbow vent field at the Mid-Atlantic Ridge (Simoneit et al., 2004), and 

the Dragon Vent Field at the SWIR (Lei et al., 2015). Hydrothermal alteration 



 

 

signatures do seem to have been recorded by the hopanes, which occurred in both the 

biological precursor (17β,21β(H)) but also thermally altered 17β,21α(H) and 

17α,21β(H) forms. However, the fact that the latter are subordinate indicates that the 

OM has been less ‘matured’ than that in other high-temperature hydrothermal sulfides 

and hydrothermal petroleum (e.g., Rushdi and Simoneit, 2002; Simoneit et al., 2004; 

Lei et al., 2015).  

Collectively, all biomarker data indicate that the near-field metalliferous 

sediments (M-T2 and M-T3), formation via deposition from buoyant hydrothermal 

plumes (with sources of fluid inputs including focused vent flow, diffuse vent flow 

and entrained seawater, German et al., 2015) and weathering of hydrothermal deposits, 

has dictated the nature of organic matter preserved there; crucially, these biomarker 

distributions are distinct from those of far-field metalliferous sediments. This 

signature could arise from either direct deposition of organic matter via the plume or 

stimulation of unique microbial assemblages in these sediments. If the former, we 

would expect similar biomarker signatures in the far-field sediments and so we 

suggest that unique microbial assemblages are being produced in near-field sediments 

due to their unique chemistry and inoculation with hydrothermal organisms. This 

interpretation is consistent with a recent study of hydrothermal plumes at the ELSC 

that reveal that species richness and phylogenetic diversity are highest near the vent 

orifice because of the mixing of microbial communities from the surrounding habitats, 

whereas plume communities are more similar to pelagic communities because of 

background seawater dilution (Sheik et al., 2015). By extension, these specific 



 

 

biomarkers did not serve as well as inorganic metal indices to distinguish M-T3 

sediments influenced by high-temperature hydrothermal activity from M-T2 and 

low-temperature hydrothermal deposits; or to distinguish far-field plume M-T1 

sediments from background sediments.  

 

5. Conclusion 

Through further analysis of surface deposits  discussed in Pan et al. (2016), we 

have elucidated the geochemical characteristics of various surface deposits in and 

around a newly discovered hydrothermal vent system in the SWIR and explored the 

response of geochemical proxies in those surface deposits to hydrothermal activity. 

Our results indicate that hydrothermal activity has a remarkable effect on the 

elemental and mineral compositions of surface deposits, with Fe/Si and 

opal/nontronite enriched in the near-field deposits influenced by low-temperature 

hydrothermal activity; abundant Fe/Mn/Cu/Zn in the other near-field metalliferous 

sediments influenced by high-temperature; and slightly higher metal content (e.g., Fe, 

Cu and Zn) in far-field deposits than background sediments. However, our organic 

geochemical analyses reveal that the non-buoyant plume had limited impact on the 

microbiology or OM composition of far-field deposits. In contrast, in situ 

microorganisms (although perhaps originally derived from the hydrothermal 

environment via the plume) significantly contribute to the OM of near-field deposits. 

Compared with the indices based on abundant metal elements derived from the 

hydrothermal systems (such as Fe/Cu/Zn content, ∑REE/Fe, the ternary diagram of 



 

 

Fe, Cu×100 and Ca), lipid biomarkers only partially differentiate the effects of 

diverse hydrothermal activity on surface deposits possibly due to the upper 

temperature limit of life impacting on organic matter assemblages and/or the dilution 

of in situ microorganisms by normal marine organisms in sediment and seawater. 
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Figures: 

Fig. 1. Station location map at the Southwest Indian Ridge (after Pan et al., 2016). 

Locations are shown for (a) most background sediments (yellow circles) and (b) 

the far-field metalliferous sediments (M-T1, white triangles), near-field 

metalliferous sediments (M-T2 and M-T3, blue and red triangles, respectively), 

and low-temperature hydrothermal deposits (green squares). 

Fig. 2. Ternary diagram of Fe, Cu×100 and Ca in samples collected from the SWIR. 

All samples were divided into three main categories including background 

sediments, metalliferous sediments and low-temperature hydrothermal deposits. 



 

 

The type of metalliferous sediments can be further divided into M-T1, M-T2 and 

M-T3. Note the hydrothermally sourced elements (Fe and Cu) enriched in 

metalliferous sediments and hydrothermal deposits; whereas background 

sediments are enriched in calcium. The data of high-temperature sulfides from the 

SWIR were cited from Luo, 2016. 

Fig. 3. Concentrations of elements in metalliferous sediments, including M-T1 (Panel 

a), M-T2 (Panel b), M-T3 (Panel c), and hydrothermal deposits (Panel d), 

normalized to average concentrations of the background sediments from the 

SWIR (hereafter SWA).  

Fig. 4. North American shale composite-normalized rare earth element (REE) 

distribution patterns of background sediments (Panel a), M-T1 (Panel b), M-T2 

(Panel c), M-T3 (Panel d) and hydrothermal deposits (Panel e) from the SWIR. 

Data for seawater, hydrothermal fluid and pelagic sediment are from Douville et al. 

(1999), Schmidt et al. (2007) and Wang et al. (1982), respectively. 

Fig. 5. The distribution of free fatty acids, glycolipid fatty acids and phospholipid 

fatty acids in background sediments and M-T1 sediments from the SWIR. SFAs, 

BrFAs and MUFAs represent saturated fatty acids, branched fatty acids and 

monounsaturated fatty acids, respectively. Other SFAs: C10–C15+C17–C32; other 

BrFAs: brC14, brC18, brC19; other MUFAs: C14:1, C17:1, C19:1, C20:1, C24:1. 

Fig. 6. Crossplots of Al/(Al+Fe+Mn) versus Fe/Ti for all deposits from the SWIR. 

The curved line (Slack et al., 2009) represents the ideal mixing between Al-free 

hydrothermal sediment and pelagic or terrigenous sediment. The data on the left 



 

 

of the figure, with lower Al/(Al+Fe+Mn) and higher Fe/Ti, could represent the 

hydrothermal end-member. The dotted line shows the Al/(Al+Fe+Mn) boundary 

between normal pelagic sediment and samples closer to hydrothermal structures 

(Boström, 1973).   

Appendix 1. Chemical structures cited in the text. 
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Table 1 The average abundances (and associated indices) for major elements, trace elements and 

rare earth elements in sediments from the Southwest Indian Ridge 

Type 
Al2O3  

(%) 

CaO  

(%) 

Fe2O3   

(%) 

K2O  

(%) 

MgO  

(%) 

MnO  

(%) 

Na2O  

(%) 

P2O5  

(%) 

TiO2  

(%) 

LOI  

(%) 

Background 

sediments  
0.86  44  0.70  0.15  0.50  0.062  1.3  0.053  0.058  5.0  

M-T1 2.5  39  2.6  0.17  2.1  0.076  1.6  0.076  0.18  6.9  

M-T2 0.25  4.6  21  0.46  1.1  3.8  2.9  0.77  0.017  22  

M-T3 1.9  5.6  25  0.18  3.8  1.1  2.0  0.56  0.15  11  

Hydrothermal 

deposits 
0.041  0.45  8.9  0.33  0.66  0.95  2.7  0.20  0.003 11  

 

Type 
V 

(ppm)  

Cr 

(ppm)  

Co 

(ppm)  

Ni 

(ppm)  

Cu 

(ppm)  

Zn 

(ppm)  

Sr 

(ppm)  

Mo 

(ppm)  

Ba 

(ppm)  

Pb 

(ppm)  

Background 

sediments  
15  11  14  17  30  25  1400  0.62  290  7.8  

M-T1 51  68  18  56  280  86  1200  0.70  290  18  

M-T2 210  6.0  33  30  2200  740  390  140  360  94  

M-T3 340  160  350  90  11000  2300  260  120  160  44  

Hydrothermal 

deposits 
66  2.2  3.2  19  45  86  190  150  890  4.8  

 

Type 
Li 

(ppm)  

Be 

(ppm)  

Sc 

(ppm)  

Rb 

(ppm)  

Y 

(ppm)  

Zr 

(ppm)  

Nb 

(ppm)  

Cs 

(ppm)  

Hf 

(ppm)  

Th 

(ppm)  

Background 

sediments  
10  0.13  1.8  4.0  8.2  8.9  0.90  0.22  0.31  0.74  

M-T1 23  0.16  5.4  4.3  9.0  16  0.79  0.21  0.59  0.62  

M-T2 38  0.69  0.63  4.9  9.6  5.6  0.29  0.12  0.13  0.17  

M-T3 7.2  0.26  4.9  3.2  11  22  0.80  0.16  0.66  0.58  

Hydrothermal 

deposits 
57  0.36  0.76  3.0  1.9  1.0  0.064  0.14  0.023  0.037  

 

Type 
U 

(ppm)  
Al/(Al+Fe+Mn)  Fe/Ti 

ΣREE 

(ppm)  

ΣREE/Fe 

(10-4) 
δCe δEu 

Background 

sediments  
0.31  0.47  14  24  63  0.65  1.2  

M-T1 0.32  0.41  18  23  13  0.64  1.3  

M-T2 5.3  0.0082  4300  18  1.3  0.56  3.9  

M-T3 12  0.054  570  28  1.6  0.63  1.6  

Hydrothermal 

deposits 
4.2  0.0041  3900  3.6  0.54  0.66  18  

Note: LOI=Loss on ignition, N N NCe= Ce La Pr 
, N N NEu = Eu Sm Gd 

, CeN, LaN, 

PrN, EuN, SmN, GdN represent North American shale composite-normalized data. 



 

 

Table 2 The distributions of n-alkanes, n-alkanols, sterols and fatty acids in background sediments 

and M-T1 at the Southwest Indian Ridge 

Type Sample NO. 

n-alkanes n-alkanols sterol (ng/g sediment) LMW/HMW 

∑

C22-C34% 
C31% CPI ACL 

∑

C22-C34% 
C18% LMW/HMW cholesterol sitosterol FFAs GLFAs PLFAs 

b
a
c
k
g
ro

u
n
d
 s

e
d
im

e
n
ts

 
 

SW6 76  17  3.4  26  9.5  62  9.5  2.6  0.41  >>1 33  6.0  

SW7 83  25  4.1  27  5.0  68  19  7.1  0.62  44  33  9.0  

SW9 83  24  3.3  27  6.8  78  14  3.8  0.51  57  7.0  2.5  

SW11 75  19  3.0  26  6.0  68  16  7.2  0.75  >>1 12  5.4  

SW12 74  12  1.1  26  21  30  3.7  8.4  1.6  46  4.8  3.4  

SW13 86  16  1.3  27  10  72  8.8  4.1  0.62  20  28  18  

SW17 72  17  3.6  26  7.3  59  13  7.8  0.41  160  26  20  

SW19 83  19  2.5  27  18  18  4.7  8.6  0.60  16  12  20  

SW20 80  21  2.5  27  4.8  65  20  4.2  0.43  200  24  11  

SW21 85  15  2.0  27  15  26  5.5  17  0.86  23  7.3  5.7  

SW22 78  23  4.3  27  5.3  75  18  5.1  ‒ >>1 8.5  10  

SW27 68  10  1.0  25  5.6  47  17  9.2  1.3  >>1 24  29  

SW28 79  25  4.5  27  5.7  58  17  2.9  0.52  9.0  23  11  

Average 79  19  2.8  27  9.3  56  13  6.8  0.72  >>1 19  12  

M
-T

1
 

SW2 75  17  2.6  26  23  22  3.3  16  1.2  32  8.9  8.9  

SW3 86  26  3.9  28  7.1  71  13  5.6  0.59  >>1 20  29  

SW4 82  24  4.2  27  6.0  71  16  4.5  0.34  23  25  22  

SW10 84  15  1.2  27  19  66  4.2  9.8  1.00  12  48  19  

Average 82  21  3.0  27  14  58  9  9.0  0.78  >>1 25  20  

Note: CPI= carbon preference index, ACL = average chain length, LMW= low molecular weight, 

HMW= high molecular weight  
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Table 3 The abundances (ng/g sediment ) of specific biomarkers in M-T2 and M-T3 sediments and 

low-temperature hydrothermal deposits at the Southwest Indian Ridge 

Biomarker 

Type 

Sample Type M-T2 M-T3 low-temperature hydrothermal deposits 

Sample NO. SW32 SW38 SW39 SW35 SW40 SW31 SW33 SW36 SW37 

n-alkanes 

∑C22-C34% 39  ‒ ‒ 35  30  38  33  50  45  

CPI 1.0  ‒ ‒ 0.41  0.67  0.80  0.38  0.24  0.70  

ACL 20  18  18  20  20  20  20  21  21  

Hopanoids 

18α(H)-22, 29, 30-Trisnorhopane 

(Tm) 
‒ ‒ 12  ‒ ‒ 3.8  ‒ ‒ ‒ 

22, 29, 30-Trisnorhop-17(21)-ene 3.6  ‒ ‒ 14  2.3  ‒ 13  ‒ ‒ 

17α(H)-22, 29, 30-Trisnorhopane 

(Ts) 
‒ ‒ 6.1  ‒ ‒ 2.1  ‒ ‒ ‒ 

17β(H)-22, 29, 30-Trisnorhopane 1.3  1.5  ‒ ‒ 2.0  1.7  6.8  ‒ ‒ 

17α(H), 21β(H)-30-Norhopane 0.68  8.8  24  4.2  0.83  12  4.0  ‒ ‒ 

18α(H)-30-Nornehopane ‒ ‒ 6.3  ‒ ‒ 3.4  ‒ ‒ ‒ 

17β(H), 21α(H)-30-Normoretane 0.54  ‒ ‒ ‒ ‒ 1.6  3.1  ‒ ‒ 

Trisnorhopan-21-one 20  18  7.5  62  25  8.4  170  3.7  0.79  

17α(H), 21β(H)-Hopane ‒ 9.8  24  6.4  3.0  13  ‒ ‒ ‒ 

17β(H), 21β(H)-30-Norhopane 2.1  ‒ ‒ ‒ ‒ ‒ 20  ‒ ‒ 

22S-17α(H), 21β(H)-Homohopane ‒ 4.7  10  2.3  ‒ 6.2  ‒ ‒ ‒ 

22R-17α(H), 21β(H)-Homohopane ‒ 4.8  9.3  3.2  3.5  6.8  ‒ ‒ ‒ 

C30 diploptene 4.0  ‒ ‒ 4.9  2.2  2.1  57  ‒ ‒ 

17β(H), 21α(H)-Hopane 16  9.6  ‒ 8.8  11  15  97  ‒ ‒ 

22S-17α(H), 

21β(H)-Bishomohopane 
‒ ‒ 8.5  ‒ ‒ ‒ ‒ ‒ ‒ 

22R-17α(H), 

21β(H)-Bishomohopane 
‒ ‒ 4.3  ‒ 6.3  ‒ ‒ ‒ ‒ 

17β(H), 21β(H)-Hopane 30  13  ‒ 13  ‒ 15  150  ‒ ‒ 

22S-17α(H), 

21β(H)-Trishomohopane 
‒ ‒ 4.6  ‒ ‒ ‒ ‒ ‒ ‒ 

22R-17α(H), 

21β(H)-Trishomohopane 
‒ ‒ 3.2  ‒ ‒ ‒ ‒ ‒ ‒ 

22S-17β(H), 

21α(H)-Homomoretane 
28  9.4  ‒ 5.9  24  9.2  110  ‒ ‒ 

22R-17β(H), 

21α(H)-Homomoretane 
36  7.7  ‒ 7.5  6.0  13  200  ‒ ‒ 

ββ-hopan-30-ol 12  73  18  41  58  7.4  ‒ 12  2.5  

Diplopterol 26  ‒ 2.8  13  4.7  9.3  140  ‒ ‒ 

22S-17β(H), 

21α(H)-Bishomomoretane 
‒ ‒ ‒ ‒ ‒ 23  140  ‒ ‒ 

22S-17β(H), 

21α(H)-Trishomomoretane 
9.4  ‒ ‒ ‒ ‒ 14  54  ‒ ‒ 

22S-17α(H), 5.6  ‒ ‒ ‒ ‒ 4.5  23  ‒ ‒ 



 

 

21β(H)-Trishomohopane 

17β(H), 

21α(H)-Tetrashomomoretane 
9.3  ‒ ‒ ‒ ‒ 2.9  ‒ ‒ ‒ 

17β(H),21β(H)-Bishomohopan-32-ol 12  23  5.8  28  15  12  48  ‒ 2.0  

C31 hopane 22S/(22S+22R) ‒ 0.50  0.52  0.41  ‒ 0.48  ‒ ‒ ‒ 

DGD 

C13/C14 ‒ ‒ ‒ ‒ 13  ‒ ‒ ‒ ‒ 

C15/C14a ‒ ‒ ‒ ‒ 12  ‒ ‒ ‒ ‒ 

C15/C14b ‒ ‒ ‒ ‒ 18  ‒ ‒ ‒ ‒ 

C15/C15a ‒ ‒ ‒ ‒ 22  ‒ ‒ ‒ ‒ 

C15/C15b ‒ 6.7  ‒ ‒ 12  ‒ ‒ ‒ 1.7  

C15/C15c ‒ 8.9  ‒ ‒ 19  ‒ ‒ ‒ ‒ 

C17/C16 ‒ ‒ ‒ ‒ ‒ ‒ 30  ‒ ‒ 

C17/C17a ‒ 4.8  ‒ ‒ 7.2  ‒ ‒ ‒ ‒ 

C17/C17b 25  21  ‒ 12  6.9  5.2  33  ‒ ‒ 

C17/C17c ‒ ‒ ‒ ‒ ‒ ‒ 34  ‒ ‒ 

C16/C18 ‒ ‒ ‒ ‒ 7.9  ‒ ‒ ‒ ‒ 

C19/C17 ‒ ‒ ‒ ‒ 11  ‒ 5.8  ‒ ‒ 

C17:1/C17:1 ‒ ‒ ‒ ‒ 2.8  ‒ 14  ‒ ‒ 

McGD 

C31  ‒ ‒ ‒ 6.4  ‒ ‒ ‒ ‒ ‒ 

C34 11  ‒ ‒ ‒ ‒ 2.6  9.6  ‒ ‒ 

C35 ‒ ‒ ‒ 2.7  ‒ ‒ ‒ ‒ ‒ 

archaeol   2.4  21  2.5  9.3  120  2.7  19  1.6  16  

Note that a, b, c represent different unknown alkyl chains and these contents of different 

biomarkers in hydrothermal deposits SW41, SW45 and SW46 are not calculated due to the low 

abundance. 

 


