110,623 research outputs found

    Optimization of Dimples in Microchannel Heat Sink with Impinging Jets—Part B: the Influences of Dimple Height and Arrangement

    Get PDF
    The combination of a microchannel heat sink with impinging jets and dimples (MHSIJD) can effectively improve the flow and heat transfer performance on the cooling surface of electronic devices with very high heat fluxes. Based on the previous work by analysing the effect of dimple radius on the overall performance of MHSIJD, the effects of dimple height and arrangement were numerically analysed. The velocity distribution, pressure drop, and thermal performance of MHSIJD under various dimple heights and arrangements were presented. The results showed that: MHSIJD with higher dimples had better overall performance with dimple radius being fixed; creating a mismatch between the impinging hole and dimple can solve the issue caused by the drift phenomenon; the mismatch between the impinging hole and dimple did not exhibit better overall performance than a well-matched design

    Competitive Outcomes and Endogenous Coalition Formation in an n-Person Game

    Get PDF
    In this paper we study competitive outcomes and endogenous coalition formation in a cooperative n-person transferable utility (TU) game from the viewpoint of general equilibrium theory.For any given game, we construct a competitive exchange coalition production economy corresponding to the game. First, it is shown that the full core of a TU game is not empty if and only if the completion of the game is balanced.The full core is defined free of any particular coalition structure and the coalitions of the game emerge endogenously from the full core.Second, it is shown that the full core of a completionbalanced general TU game coincides with the set of equilibrium payoff vectors of its corresponding economy and that the coalition structures of the game are endogenously determined by the equilibrium outcomes of the economy.As a consequence, the core of a balanced general TU game coincides with the set of equilibrium payoff vectors of its corresponding economy.game theory;cooperative games;general equilibrium

    Cascade of Quantum Phase Transitions in Tunnel-Coupled Edge States

    Full text link
    We report on the cascade of quantum phase transitions exhibited by tunnel-coupled edge states across a quantum Hall line junction. We identify a series of quantum critical points between successive strong and weak tunneling regimes in the zero-bias conductance. Scaling analysis shows that the conductance near the critical magnetic fields BcB_{c} is a function of a single scaling argument BBcTκ|B-B_{c}|T^{-\kappa}, where the exponent κ=0.42\kappa = 0.42. This puzzling resemblance to a quantum Hall-insulator transition points to importance of interedge correlation between the coupled edge states.Comment: 4 pages, 3 figure

    Dynamics of moving bubbles in single and binary component systems

    Get PDF
    Dynamics of a single bubble moving in a quiescent liquid is analyzed for single and binary component systems. The transport of energy and/or mass at thermodynamic-phase equilibrium governs the dynamics of the bubble at its interface

    Evidence for a ν=5/2\nu=5/2 Fractional Quantum Hall Nematic State in Parallel Magnetic Fields

    Full text link
    We report magneto-transport measurements for the fractional quantum Hall state at filling factor ν=\nu= 5/2 as a function of applied parallel magnetic field (BB_{||}). As BB_{||} is increased, the 5/2 state becomes increasingly anisotropic, with the in-plane resistance along the direction of BB_{||} becoming more than 30 times larger than in the perpendicular direction. Remarkably, the resistance anisotropy ratio remains constant over a relatively large temperature range, yielding an energy gap which is the same for both directions. Our data are qualitatively consistent with a fractional quantum Hall \textit{nematic} phase

    Thermal rectifier from deformed carbon nanohorns

    Full text link
    We study thermal rectification in single-walled carbon nanohorns (SWNHs) by using non-equilibrium molecular dynamics (MD) method. It is found that the horns with the bigger top angles show larger asymmetric heat transport due to the larger structural gradient distribution. This kind of gradient behavior can be further adjusted by applying external strain on the SWNHs. After being carefully elongated along the axial direction, the thermal rectification in the elongated SWNHs can become more obvious than that in undeformed ones. The maximum rectification efficiency of SWNHs is much bigger than that of carbon nanotube intramolecular junctions.Comment: 3 figure
    corecore