1,306 research outputs found

    DEM simulation of the mechanical properties of SiC ceramic under pre-stressing

    Get PDF
    In this paper, the method of discrete element model (DEM) simulation was used to investigate the mechanical properties of SiC ceramic materials under the action of pre-stress. Using the bonded particle model (BPM), several different numerical tests (such as UCT, TPB, SENB tests) of SiC ceramic were established. Different pre-stress values were applied on the lateral surface of the ceramic specimen during the numerical simulation process, all tests were carried out at least 5 times with different random number, and the average mechanical properties results were calculated. It was showed that the existence of pre-stress has a significant effect on the mechanical properties of materials. It can enhance the strength of materials, while the force action on material in machining process force or action force the crack’s initiation and propagation was limited

    A Lanczos algorithm for linear response

    Full text link
    An iterative algorithm is presented for solving the RPA equations of linear response. The method optimally computes the energy-weighted moments of the strength function, allowing one to match the computational effort to the intrinsic accuracy of the basic mean-field approximation, avoiding the problem of solving very large matrices. For local interactions, the computational effort for the method scales with the number of particles N_p as O(N_p^3).Comment: 12 pages including 3 figures; Late

    Stimulation of Brain AMP-activated Protein Kinase Attenuates Inflammation and Acute Lung Injury in Sepsis

    Get PDF
    Sepsis and septic shock are enormous public health problems with astronomical financial repercussions on health systems worldwide. The central nervous system (CNS) is closely intertwined in the septic process but the underlying mechanism is still obscure. AMP-activated protein kinase (AMPK) is a ubiquitous energy sensor enzyme and plays a key role in regulation of energy homeostasis and cell survival. In this study, we hypothesized that activation of AMPK in the brain would attenuate inflammatory responses in sepsis, particularly in the lungs. Adult C57BL/6 male mice were treated with 5-aminoimidazole-4-carboxamide riboneucleotide (AICAR, 20 ng), an AMPK activator, or vehicle (normal saline) by intracerebro-ventricular (ICV) injection, followed by cecal ligation and puncture (CLP) at 30 min post-ICV. The septic mice treated with AICAR exhibited elevated phosphorylation of AMPKalpha in the brain along with reduced serum levels of aspartate aminotransferase, tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta), and interleukin-6 (IL-6), compared to the vehicle. Similarly, the expressions of TNF-alpha, IL-1beta, keratinocyte-derived chemokine and macrophage inflammatory protein-2 as well as myeloperoxidase activity in the lungs of AICAR-treated mice were significantly reduced. Moreover, histological findings in the lungs showed improvement of morphologic features and reduction of apoptosis with AICAR treatment. We further found that the beneficial effects of AICAR on septic mice were diminished in AMPKalpha2 deficient mice, showing that AMPK mediates these effects. In conclusion, our findings reveal a new functional role of activating AMPK in the CNS to attenuate inflammatory responses and acute lung injury in sepsis

    Hamiltonian light-front field theory within an AdS/QCD basis

    Full text link
    Non-perturbative Hamiltonian light-front quantum field theory presents opportunities and challenges that bridge particle physics and nuclear physics. Fundamental theories, such as Quantum Chromodynmamics (QCD) and Quantum Electrodynamics (QED) offer the promise of great predictive power spanning phenomena on all scales from the microscopic to cosmic scales, but new tools that do not rely exclusively on perturbation theory are required to make connection from one scale to the next. We outline recent theoretical and computational progress to build these bridges and provide illustrative results for nuclear structure and quantum field theory. As our framework we choose light-front gauge and a basis function representation with two-dimensional harmonic oscillator basis for transverse modes that corresponds with eigensolutions of the soft-wall AdS/QCD model obtained from light-front holography.Comment: To appear in the proceedings of Light-Cone 2009: Relativistic Hadronic and Particle Physics, July 8-13, 2009, Sao Jose dos Campos, Brazi

    Blocking cold-inducible RNA-binding protein protects liver from ischemia-reperfusion injury

    Get PDF
    Cold-inducible RNA-binding protein (CIRP) is a nuclear protein that has been recently identified as a novel inflammatory mediator in hemorrhagic shock and sepsis. We hypothesized that CIRP acts as a potent inflammatory mediator in hepatic ischemia-reperfusion (I/R), and thus blocking CIRP protects against I/R-induced liver injury. Male C57BL/6 mice were subjected to 70% hepatic ischemia by microvascular clamping of the hilum of the left and median liver lobes for 60 min, followed by reperfusion. Anti-CIRP antibody (1 mg/kg body weight) or vehicle (normal saline) in 0.2 mL was injected via the internal jugular vein at the beginning of the reperfusion. Blood and liver tissues were collected 24 h after I/R for various measurements, and a 10-day survival study was performed. Cold-inducible RNA-binding protein released into the circulation was significantly increased 24 h after hepatic I/R. Anti-CIRP antibody treatment markedly reduced hepatocellular damage markers and significantly improved the liver microarchitecture. Anti-CIRP also reduced the systemic and local inflammation demonstrated by attenuation in both serum and hepatic levels of interleukin 6. The expression of neutrophil-attracting chemokine as well as liver neutrophil infiltration was reduced by anti-CIRP treatment. Anti-CIRP also dramatically decreased the amount of apoptosis and nitrosative stress, evidenced by decrease in TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) staining and inducible nitric oxide synthase and cyclooxygenase 2 levels, respectively. Finally, the 10-day survival rate was increased from 37.5% in the vehicle group to 75% in the anti-CIRP treatment group. Thus, targeting CIRP offers potential therapeutic implications in the treatment of hepatic I/R injury

    Two-particle localization and antiresonance in disordered spin and qubit chains

    Full text link
    We show that, in a system with defects, two-particle states may experience destructive quantum interference, or antiresonance. It prevents an excitation localized on a defect from decaying even where the decay is allowed by energy conservation. The system studied is a qubit chain or an equivalent spin chain with an anisotropic (XXZXXZ) exchange coupling in a magnetic field. The chain has a defect with an excess on-site energy. It corresponds to a qubit with the level spacing different from other qubits. We show that, because of the interaction between excitations, a single defect may lead to multiple localized states. The energy spectra and localization lengths are found for two-excitation states. The localization of excitations facilitates the operation of a quantum computer. Analytical results for strongly anisotropic coupling are confirmed by numerical studies.Comment: Updated version, 13 pages, 5 figures To appear in Phys. Rev. B (2003

    Microwave and terahertz dielectric properties of MgTiO3–CaTiO3 ceramics

    Get PDF
    The THz dielectric properties of MgTiO3–CaTiO3 ceramics are reported. The ceramics were prepared via a solid-state reaction route and the sintering conditions were optimized to obtain ceramics with high permittivity and low loss in the terahertz frequency domain. The amount of impurities (MgTi2O5) and grain size increased with increasing sintering temperature. The dielectric properties improved with increasing density, and the best terahertz dielectric performance was obtained at 1260 °C, with a permittivity of 17.73 and loss of 3.07×10−3. Ceramics sintered above 1260 °C showed a sharp increase in loss, which is ascribed to an increase in the impurity content

    Optical transmission losses in materials due to repeated impacts of liquid droplets

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76812/1/AIAA-7018-720.pd

    Wedgebox analysis of four-lepton events from neutralino pair production at the LHC

    Get PDF
    `Wedgebox' plots constructed by plotting the di-electron invariant mass versus the di-muon invariant mass from pp -> e^+e^- mu^+ mu^- + missing energy signature LHC events. Data sets of such events are obtained across the MSSM input parameter space in event-generator simulations, including cuts designed to remove SM backgrounds. Their study reveals several general features: (1)Regions in the MSSM input parameter space where a sufficient number of events are expected so as to be able to construct a clear wedgebox plot are delineated. (2)The presence of box shapes on a wedgebox plot either indicates the presence of heavy Higgs bosons decays or restricts the location to a quite small region of low \mu and M_2 values \lsim 200 GeV, a region denoted as the `lower island'. In this region, wedgebox plots can be quite complicated and change in pattern rather quickly as one moves around in the (\mu, M_2) plane. (3)Direct neutralino pair production from an intermediate Z^{0*} may only produce a wedge-shape since only \widetilde{\chi}_2^0\widetilde{\chi}_3^0 decays can contribute significantly. (4)A double-wedge or wedge-protruding-from-a-box pattern on a wedgebox plot, which results from combining a variety of MSSM production processes, yields three distinct observed endpoints, almost always attributable to \widetilde{\chi}_{2,3,4}^0 \to \widetilde{\chi}_1^0 \ell^+\ell^- decays, which can be utilized to determine a great deal of information about the neutralino and slepton mass spectra and related MSSM input parameters. Wedge and double-wedge patterns are seen in wedgebox plots in another region of higher \mu and M_2 values, denoted as the`upper island.' Here the pattern is simpler and more stable as one moves across the (\mu, M_2) input parameter space.Comment: 28 pages (LaTeX), 8 figures (encapsulated postscript

    Confront Holographic QCD with Regge Trajectories of vectors and axial-vectors

    Full text link
    We derive the general 5-dimension metric structure of the DpDqDp-Dq system in type II superstring theory, and demonstrate the physical meaning of the parameters characterizing the 5-dimension metric structure of the \textit{holographic} QCD model by relating them to the parameters describing Regge trajectories. By matching the spectra of vector mesons ρ1\rho_1 with deformed DpDqDp-Dq soft-wall model, we find that the spectra of vector mesons ρ1\rho_1 can be described very well in the soft-wall D3DqD3-Dq model, i.e, AdS5AdS_5 soft-wall model. We then investigate how well the AdS5AdS_5 soft-wall model can describe the Regge trajectory of axial-vector mesons a1a_1. We find that the constant component of the 5-dimension mass square of axial-vector mesons plays an efficient role to realize the chiral symmetry breaking in the vacuum, and a small negative z4z^4 correction in the 5-dimension mass square is helpful to realize the chiral symmetry restoration in high excitation states.Comment: 9 pages, 3 figure and 3 tables, one section adde
    corecore