1,928 research outputs found

    Compressing Inertial Motion Data in Wireless Sensing Systems – An Initial Experiment

    Get PDF
    The use of wireless inertial motion sensors, such as accelerometers, for supporting medical care and sport’s training, has been under investigation in recent years. As the number of sensors (or their sampling rates) increases, compressing data at source(s) (i.e. at the sensors), i.e. reducing the quantity of data that needs to be transmitted between the on-body sensors and the remote repository, would be essential especially in a bandwidth-limited wireless environment. This paper presents a set of compression experiment results on a set of inertial motion data collected during running exercises. As a starting point, we selected a set of common compression algorithms to experiment with. Our results show that, conventional lossy compression algorithms would achieve a desirable compression ratio with an acceptable time delay. The results also show that the quality of the decompressed data is within acceptable range

    Quick and sensitive determination of gene expression of fatty acid synthase in vitro by using real-time polymerase chain reaction amplification (PCR)

    Get PDF
    Obesity results from an imbalance between energy intake and energy expenditure, which leads to a pathological accumulation of adipose tissue, but the underlying mechanism at gene level, is far from being elucidated. The objective of this study was to investigate the correlation between mRNA express from fatty acid synthase (FAS) with a different glucose level in primary adipocytes by real-time polymerase chain reaction amplification (PCR), which can aid in the understanding of the mechanism of obesity in vitro. By using the following formula, this study was able to quantify the mRNA expression of FAS of unknown samples: Y = -3.156X + 41.21 (Y = threshold cycle, X = log starting quantity). The high concentrations of glucose group significantly improved the mRNA expression of FAS (P < 0.01) rather than 0.25 and 0% concentrations of glucose. These results provide significant data that confirm an association between different glucose level and FAS expression in preadipocytes. The glucose concentration of the high group substantially augmented the mRNA expression of FAS.Key words: Expression, fatty acid synthase, lipid deposition, real-time polymerase chain reaction amplification (PCR)

    Molecular characterization of Citrus tristeza virus isolates from Pakistan based on CPG/Hinf I restriction fragment length polymorphism (RFLP) groups analysis

    Get PDF
    From six different districts of Punjab, Pakistan, 85 isolates of Citrus tristeza virus (CTV) were collected and characterized based on coat protein gene (CPG) analysis. All isolates were collected from field trees showing various CTV symptoms such as decline in most citrus varieties, inverse pitting on some sour orange rootstocks below bud union, mild-to-moderate stem-pitting on the trunk of some sweet orange. The CTV CP gene of all isolates was amplified by reverse transcriptase polymerase chain reaction (RT–PCR) using CP gene-specific primers yielding 672 bp. The maximum disease incidence was found in sweet orange followed by mandarin and grapefruit. These isolates were then subjected to CPG/Hinf I restriction fragment length polymorphism (RFLP) analysis. Mixed infection of CTV isolates was found very common in the field tress in Pakistan. The most dominant CPG/Hinf I RFLP groups III, I and VI are the basic causal epidemic in Pakistan. Moreover, based on symptoms in the field trees, CPG/Hinf I RFLP groups III, I and VI are considered to be the obvious causes of decline and stem-pitting in Pakistan.Key words: Citrus tristeza virus, CPG/Hinf I restriction fragment length polymorphism (RFLP) groups, decline, stem-pitting

    Concentration effect on construction firms : tests of resource partitioning theory in Jiangsu Province (China) from 1989 to 2007

    Get PDF
    Author name used in this manuscript: John F. Y. Yeung2011-2012 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Proteome profiling of cadmium-induced apoptosis by antibody array analyses in human bronchial epithelial cells

    Get PDF
    Protein array technology is a powerful platform for the simultaneous determination of the expression levels of a number of proteins as well as post-translational modifications such as phosphorylation. Here, we screen and report for the first time, the dominant signaling cascades and apoptotic mediators during the course of cadmium (Cd)-induced cytotoxicity in human bronchial epithelial cells (BEAS-2B) by antibody array analyses. Proteins from control and Cd-treated cells were captured on Proteome Profiler™ Arrays for the parallel determination of the relative levels of protein phosphorylation and proteins associated with apoptosis. Our results indicated that the p38 MAPK- and JNK-related signal transduction pathways were dramatically activated by Cd treatment. Cd potently stimulates the phosphorylations of p38α (MAPK14), JNK1/2 (MAPK8/9), and JUN; while the phosphorylations of Akt1, ERK1/2 (MAPK3/1), GSK3β, and mTOR were suppressed. Moreover, there was an induction of proapoptotic protein BAX, release of cytochrome c (CYCS) from mitochondria, activation of caspase-3/9 (CASP3/9); as well as decreased expression of cell cycle checkpoint proteins (TP53, p21, and p27) and several inhibitors of apoptosis proteins (IAPs) [including cIAP-1/2 (BIRC2/3), XIAP (BIRC4), and survivin (BIRC5)]. Pretreatment of cells with the thiol antioxidant glutathione or p38 MAPK/JNK inhibitors before Cd treatment effectively abrogated ROS activation of p38 MAPK/JNK pathways and apoptosis-related proteins. Taken together, our results demonstrate that Cd causes oxidative stress-induced apoptosis; and the p38 MAPK/JNK and mitochondrial pathways are more importantly participated for signal transduction and the induction of apoptosis in Cd-exposed human lung cells.published_or_final_versio

    Multiterminal junctions formed by heating ultrathin single-walled carbon nanotubes

    Get PDF
    Author name used in this publication: S. Q. Shi2004-2005 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Developing a benchmarking model for construction projects in Hong Kong

    Get PDF
    Author name used in this manuscript: John F. Y. YeungAuthor name used in this manuscript: Y. H. Chiang2012-2013 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Oxidative coupling between C(sp2)-H and C(sp3)-H bonds of indoles and cyclic ethers/cycloalkanes

    Get PDF
    2015-2016 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Beyond carbon and nitrogen: how the microbial energy economy couples elemental cycles in diverse ecosystems

    Get PDF
    Microbial metabolism couples elemental reactions, driving biogeochemical cycles. Assimilatory coupling of elemental cycles, such as the carbon (C), nitrogen (N), and phosphorus cycles, occurs when these elements are incorporated into biomass or released through its decomposition. In addition, many microbes are capable of dissimilatory coupling, catalyzing energy-releasing reactions linked to transformations in the oxidation state of elements, and releasing the transformed elements to the environment. Different inorganic elements provide varying amounts of energy yield, and the interaction of these processes creates a microbial energy economy. Dissimilatory reactions involving C, N, iron, and sulfur provide particularly important examples where microbially mediated oxidation–reduction (redox) transformations affect nutrient availability for net primary production, greenhouse-gas emissions, levels of contaminants and natural toxic factors, and other ecosystem dynamics. Recent discoveries of previously unrecognized microbial dissimilatory processes are leading to reevaluation of traditional perceptions of biogeochemical cycles
    • …
    corecore