62,452 research outputs found

    Out of plane effect on the superconductivity of Sr2-xBaxCuO3+y with Tc up to 98K

    Full text link
    A series of new Sr2-xBaxCuO3+y (0 x 0.6) superconductors were prepared using high-pressure and high-temperature synthesis. A Rietveld refinement based on powder x-ray diffraction confirms that the superconductors crystallize in the K2NiF4-type structure of a space group I4/mmm similar to that of La2CuO4 but with partially occupied apical oxygen sites. It is found that the superconducting transition temperature Tc of this Ba substituted Sr2CuO3+y superconductor with constant carrier doping level, i.e., constant d, is controlled not only by order/disorder of apical-O atoms but also by Ba content. Tcmax =98 K is achieved in the material with x=0.6 that reaches the record value of Tc among the single-layer copper oxide superconductors, and is higher than Tc=95K of Sr2CuO3+y with optimally ordered apical-O atoms. There is Sr-site disorder in Sr2-xBaxCuO3+y which might lead to a reduction of Tc. The result indicates that another effect surpasses the disorder effect that is related either to the increased in-plane Cu-O bond length or to elongated apical-O distance due to Ba substitution with larger cation size. The present experiment demonstrates that the optimization of local geometry out of the Cu-O plane can dramatically enhance Tc in the cuprate superconductors.Comment: 23 Pages, 1 Table, 5 Figure

    A robot-based burr measurement system for the automotive industry

    Get PDF
    Burrs are often difficult to detect and measure because of their intrinsic variability in shape and dimension. No automotive standard had been established about their acceptable dimensions and measurement techniques for sheet steel products. For the automotive industry, even burrs of the size of 100 μm are perceived as damaging because of their dramatic impact upon panel corrosion resistance and assembly performance. It is critical to measure burrs during panel manufacture in order to control the process. The characterization of the typical burr produced has been carried out employing 3D measurements with a surface profilometer and a SEM. This analysis has shown a typical triangular burr shape and some characteristic dimensions. A contact method and two laser-triangulation systems have been developed. The instrument accuracy was analyzed, based upon a full factorial experimentation over a set of typical panels edges

    Competing Interactions among Supramolecular Structures on Surfaces

    Full text link
    A simple model was constructed to describe the polar ordering of non-centrosymmetric supramolecular aggregates formed by self assembling triblock rodcoil polymers. The aggregates are modeled as dipoles in a lattice with an Ising-like penalty associated with reversing the orientation of nearest neighbor dipoles. The choice of the potentials is based on experimental results and structural features of the supramolecular objects. For films of finite thickness, we find a periodic structure along an arbitrary direction perpendicular to the substrate normal, where the repeat unit is composed of two equal width domains with dipole up and dipole down configuration. When a short range interaction between the surface and the dipoles is included the balance between the up and down dipole domains is broken. Our results suggest that due to surface effects, films of finite thickness have a none zero macroscopic polarization, and that the polarization per unit volume appears to be a function of film thickness.Comment: 3 pages, 3 eps figure

    A novel approach for the assessment of morphological evolution based on observed water levels in tide-dominated estuaries

    Get PDF
    Assessing the impacts of both natural (e.g., tidal forcing from the ocean) and human-induced changes (e.g., dredging for navigation, land reclamation) on estuarine morphology is particularly important for the protection and management of the estuarine environment. In this study, a novel analytical approach is proposed for the assessment of estuarine morphological evolution in terms of tidally averaged depth on the basis of the observed water levels along the estuary. The key lies in deriving a relationship between wave celerity and tidal damping or amplification. For given observed water levels at two gauging stations, it is possible to have a first estimation of both wave celerity (distance divided by tidal travelling time) and tidal damping or amplification rate (tidal range difference divided by distance), which can then be used to predict the morphological changes via an inverse analytical model for tidal hydrodynamics. The proposed method is applied to the Lingdingyang Bay of the Pearl River Estuary, located on the southern coast of China, to analyse the historical development of the tidal hydrodynamics and morphological evolution. The analytical results show surprisingly good correspondence with observed water depth and volume in this system. The merit of the proposed method is that it provides a simple approach for understanding the decadal evolution of the estuarine morphology through the use of observed water levels, which are usually available and can be easily measured.National Key R&D of China (Grant No. 2016YFC0402601), National Natural Science Foundation of China (Grant No. 51979296, 51709287, 41706088, 41476073), Fundamental Research Funds for the Central Universities (No.18lgpy29) and from the Water Resource Science and Technology Innovation Program of Guangdong Province (Grant No. 2016-20, 2016-21). The work of the second author was supported by FCT research contracts IF/00661/2014/CP1234.info:eu-repo/semantics/submittedVersio

    Weak anisotropy of the superconducting upper critical field in Fe1.11Te0.6Se0.4 single crystals

    Full text link
    We have determined the resistive upper critical field Hc2 for single crystals of the superconductor Fe1.11Te0.6Se0.4 using pulsed magnetic fields of up to 60T. A rather high zero-temperature upper critical field of mu0Hc2(0) approx 47T is obtained, in spite of the relatively low superconducting transition temperature (Tc approx 14K). Moreover, Hc2 follows an unusual temperature dependence, becoming almost independent of the magnetic field orientation as the temperature T=0. We suggest that the isotropic superconductivity in Fe1.11Te0.6Se0.4 is a consequence of its three-dimensional Fermi-surface topology. An analogous result was obtained for (Ba,K)Fe2As2, indicating that all layered iron-based superconductors exhibit generic behavior that is significantly different from that of the high-Tc cuprates.Comment: 4 pages, 4 figures, submit to PR

    Raman spectroscopic determination of the length, strength, compressibility, Debye temperature, elasticity, and force constant of the C-C bond in graphene

    Full text link
    From the perspective of bond relaxation and vibration, we have reconciled the Raman shifts of graphene under the stimuli of the number-of-layer, uni-axial-strain, pressure, and temperature in terms of the response of the length and strength of the representative bond of the entire specimen to the applied stimuli. Theoretical unification of the measurements clarifies that: (i) the opposite trends of Raman shifts due to number-of-layer reduction indicate that the G-peak shift is dominated by the vibration of a pair of atoms while the D- and the 2D-peak shifts involves z-neighbor of a specific atom; (ii) the tensile strain-induced phonon softening and phonon-band splitting arise from the asymmetric response of the C3v bond geometry to the C2v uni-axial bond elongation; (iii) the thermal-softening of the phonons originates from bond expansion and weakening; and (iv) the pressure- stiffening of the phonons results from bond compression and work hardening. Reproduction of the measurements has led to quantitative information about the referential frequencies from which the Raman frequencies shift, the length, energy, force constant, Debye temperature, compressibility, elastic modulus of the C-C bond in graphene, which is of instrumental importance to the understanding of the unusual behavior of graphene

    Split Two-Higgs-Doublet Model and Neutrino Condensation

    Full text link
    We split the two-Higgs-doublet model by assuming very different vevs for the two doublets: the vev is at weak scale (174 GeV) for the doublet \Phi_1 and at neutrino-mass scale (10^{-2} \sim 10^{-3} eV) for the doublet \Phi_2. \Phi_1 is responsible for giving masses to all fermions except neutrinos; while \Phi_2 is responsible for giving neutrino masses through its tiny vev without introducing see-saw mechanism. Among the predicted five physical scalars H, h, A^0 and H^{\pm}, the CP-even scalar h is as light as 10^{-2} \sim 10^{-3}eV while others are at weak scale. We identify h as the cosmic dark energy field and the other CP-even scalar H as the Standard Model Higgs boson; while the CP-odd A^0 and the charged H^{\pm} are the exotic scalars to be discovered at future colliders. Also we demonstrate a possible dynamical origin for the doublet \Phi_2 from neutrino condensation caused by some unknown dynamics.Comment: version in Europhys. Lett. (discussions added
    corecore