156,873 research outputs found
Real-time food intake classification and energy expenditure estimation on a mobile device
© 2015 IEEE.Assessment of food intake has a wide range of applications in public health and life-style related chronic disease management. In this paper, we propose a real-time food recognition platform combined with daily activity and energy expenditure estimation. In the proposed method, food recognition is based on hierarchical classification using multiple visual cues, supported by efficient software implementation suitable for realtime mobile device execution. A Fischer Vector representation together with a set of linear classifiers are used to categorize food intake. Daily energy expenditure estimation is achieved by using the built-in inertial motion sensors of the mobile device. The performance of the vision-based food recognition algorithm is compared to the current state-of-the-art, showing improved accuracy and high computational efficiency suitable for realtime feedback. Detailed user studies have also been performed to demonstrate the practical value of the software environment
Radiative Penguin Decays of B Mesons: Measurements of B -> K* gamma, B -> K2*(1430) gamma, and Search for B0 -> phi gamma
Electromagnetic radiative penguin decays of the B meson were studied with the
BaBar detector at SLAC's PEP-II asymmetric-energy B Factory. Branching
fractions and isospin asymmetry of the decay B -> K* gamma, branching fractions
of B -> K2*(1430) gamma, and a search for B0 -> phi gamma are presented. The
decay rates may be enhanced by contributions from non-standard model processes.Comment: 5 pages, 3 figures, presented at the 2004 Meeting of the Division of
Particles and Fields of the American Physical Society, Riverside, CA, USA,
August 26-31, 2004, submitted to International Journal of Modern Physics
Recommended from our members
Process Parameters Optimization for Ultrasonically Consolidated Fiber-Reinforced Metal Matrix Composites
As an emerging rapid prototyping technology, Ultrasonic Consolidation (UC) has
been used to successfully fabricate metal matrix composites (MMC). The intent of this
study is to identify the optimum combination of processing parameters, including
oscillation amplitude, welding speed, normal force, operating temperature and fiber
orientation, for manufacture of long fiber-reinforced MMCs. The experiments were
designed using the Taguchi method, and an L25 orthogonal array was utilized to
determine the influences of each parameter. SiC fibers of 0.1mm diameter were
successfully embedded into an Al 3003 metal matrix. Two methods were employed to
characterize the bonding between the fiber and matrix material: optical/electron
microscopy and push-out tests monitored by an acoustic emission (AE) sensor. SEM
images and data from push-out tests were analyzed and optimum combinations of
parameters were achieved.Mechanical Engineerin
Through a glass darkly: a case for the study of virtual space
This paper begins to examine the similarities and differences between virtual space and real space, as taken from anarchitectural (as opposed to a biological, psychological, geographic, philosophical or information theoretic)standpoint. It continues by introducing a number of criteria, suggested by the authors as being necessary for virtualspace to be used in a manner consistent with our experience of real space. Finally, it concludes by suggesting apedagogical framework for the benefits and associated learning outcomes of the study and examination of thisrelationship. This is accompanied by examples of recent student work, which set out to investigate this relationship
Recommended from our members
Interface Microstructures and Bond Formation in Ultrasonic Consolidation
The quality of ultrasonically consolidated parts critically depends on the bond quality
between individual metal foils. This necessitates a detailed understanding of interface
microstructures and ultrasonic bonding mechanism. There is a lack of information on interface
microstructures in ultrasonically consolidated parts as well as a lack of consensus on the
mechanism of metal ultrasonic welding, especially on matters such as plastic deformation and
recrystallization. In the current work, interface microstructures of an ultrasonically consolidated
multi-material Al 3003-Ni 201 sample were analyzed in detail using optical microscopy,
scanning electron microscopy, energy dispersive spectroscopy, and orientation imaging
microscopy. Based on the results of microstructural studies, the mechanism of metal ultrasonic
welding has been discussed. The reasons for formation of defects/unbonded regions in
ultrasonically consolidated parts have also been identified and discussedMechanical Engineerin
- …