56,104 research outputs found

    3D UAV Trajectory and Communication Design for Simultaneous Uplink and Downlink Transmission

    Get PDF
    In this paper, we investigate the unmanned aerial vehicle (UAV)-Aided simultaneous uplink and downlink transmission networks, where one UAV acting as a disseminator is connected to multiple access points (AP), and the other UAV acting as a base station (BS) collects data from numerous sensor nodes (SNs). The goal of this paper is to maximize the system throughput by jointly optimizing the 3D UAV trajectory, communication scheduling, and UAV-AP/SN transmit power. We first consider a special case where the UAV-BS and UAV-AP trajectories are pre-determined. Although the resulting problem is an integer and non-convex optimization problem, a globally optimal solution is obtained by applying the polyblock outer approximation (POA) method based on the problem's hidden monotonic structure. Subsequently, for the general case considering the 3D UAV trajectory optimization, an efficient iterative algorithm is proposed to alternately optimize the divided sub-problems based on the successive convex approximation (SCA) technique. Numerical results demonstrate that the proposed design is able to achieve significant system throughput gain over the benchmarks. In addition, the SCA-based method can achieve nearly the same performance as the POA-based method with much lower computational complexity

    Throughput Maximization for UAV-Aided Backscatter Communication Networks

    Get PDF
    This paper investigates unmanned aerial vehicle (UAV)-aided backscatter communication (BackCom) networks, where the UAV is leveraged to help the backscatter device (BD) forward signals to the receiver. Based on the presence or absence of a direct link between BD and receiver, two protocols, namely transmit-backscatter (TB) protocol and transmit-backscatter-relay (TBR) protocol, are proposed to utilize the UAV to assist the BD. In particular, we formulate the system throughput maximization problems for the two protocols by jointly optimizing the time allocation, reflection coefficient and UAV trajectory. Different static/dynamic circuit power consumption models for the two protocols are analyzed. The resulting optimization problems are shown to be non-convex, which are challenging to solve. We first consider the dynamic circuit power consumption model, and decompose the original problems into three sub-problems, namely time allocation optimization with fixed UAV trajectory and reflection coefficient, reflection coefficient optimization with fixed UAV trajectory and time allocation, and UAV trajectory optimization with fixed reflection coefficient and time allocation. Then, an efficient iterative algorithm is proposed for both protocols by leveraging the block coordinate descent method and successive convex approximation (SCA) techniques. In addition, for the static circuit power consumption model, we obtain the optimal time allocation with a given reflection coefficient and UAV trajectory and the optimal reflection coefficient with low computational complexity by using the Lagrangian dual method. Simulation results show that the proposed protocols are able to achieve significant throughput gains over the compared benchmarks

    Multi-View Region Adaptive Multi-temporal DMM and RGB Action Recognition

    Get PDF
    Human action recognition remains an important yet challenging task. This work proposes a novel action recognition system. It uses a novel Multiple View Region Adaptive Multi-resolution in time Depth Motion Map (MV-RAMDMM) formulation combined with appearance information. Multiple stream 3D Convolutional Neural Networks (CNNs) are trained on the different views and time resolutions of the region adaptive Depth Motion Maps. Multiple views are synthesised to enhance the view invariance. The region adaptive weights, based on localised motion, accentuate and differentiate parts of actions possessing faster motion. Dedicated 3D CNN streams for multi-time resolution appearance information (RGB) are also included. These help to identify and differentiate between small object interactions. A pre-trained 3D-CNN is used here with fine-tuning for each stream along with multiple class Support Vector Machines (SVM)s. Average score fusion is used on the output. The developed approach is capable of recognising both human action and human-object interaction. Three public domain datasets including: MSR 3D Action,Northwestern UCLA multi-view actions and MSR 3D daily activity are used to evaluate the proposed solution. The experimental results demonstrate the robustness of this approach compared with state-of-the-art algorithms.Comment: 14 pages, 6 figures, 13 tables. Submitte

    Effective Low-Energy Model for f-Electron Delocalization

    Full text link
    We consider a Periodic Anderson Model (PAM) with a momentum-dependent inter-band hybridization that is strongly suppressed near the Fermi level. Under these conditions, we reduce the PAM to an effective low-energy Hamiltonian, HeffH_{\rm eff}, by expanding in the small parameter V0/tV_0/t ( V0V_0 is the maximum inter-band hybridization amplitude and tt is the hopping integral of the broad band). The resulting model consists of a t-J f-band coupled via the Kondo exchange to the electrons in the broad band. HeffH_{\rm eff} allows for studying the f-electron delocalization transition. The result is a doping-induced Mott transition for the f-electron delocalization, which we demonstrate by density-matrix renormalization group (DMRG) calculations

    High quality testing of grid style power gating

    No full text
    This paper shows that existing delay-based testing techniques for power gating exhibit fault coverage loss due to unconsidered delays introduced by the structure of the virtual voltage power-distribution-network (VPDN). To restore this loss, which could reach up to 70.3% on stuck-open faults, we propose a design-for-testability (DFT) logic that considers the impact of VPDN on fault coverage in order to constitute the proper interface between the VPDN and the DFT. The proposed logic can be easily implemented on-top of existing DFT solutions and its overhead is optimized by an algorithm that offers trade-off flexibility between test-application-time and hardware overhead. Through physical layout SPICE simulations, we show complete fault coverage recovery on stuck-open faults and 43.2% test-application-time improvement compared to a previously proposed DFT technique. To the best of our knowledge, this paper presents the first analysis of the VPDN impact on test qualit
    • …
    corecore