5,307 research outputs found

    The influence of particle surface friction on the behavior of gas-fluidized beds: Development of a two fluid model

    Get PDF
    The influence of physically realistic collisional properties on the hydrodynamics in a bubbling dense gas-solid fluidized bed is investigated using both a Discrete Particle Model (DPM) and a Two Fluid Model (TFM) incorporating a kinetic theory of granular flow (KTGF) for rough spheres by Lei et al. (1). The validated KTGF accounts for particle rotation and particle surface friction expilicitly. Comparisons between the two models are carried out to investigate the influence of particle friction on axial particle velocity, solids circulation pattern, and bubble behavior. The simulated results from both models reveal that the friction coefficient plays an important role in the formation of heterogeneous structures in a bubbling bed. When the friction coefficient is increased, larger bubbles appear and the fluidization in the bed is more vigorous. In addition, the time-averaged gas-solid flow field and time-averaged solids volume fraction vary significantly with different friction coefficient. Less dense zones are found in the bed for larger values of the friction coefficient. Please click Additional Files below to see the full abstract

    Holonomy Transformation in the FRW Metric

    Get PDF
    In this work we investigate loop variables in Friedman-Robertson-Walker spacetime. We analyze the parallel transport of vectors and spinors in several paths in this spacetime in order to classify its global properties. The band holonomy invariance is analysed in this background.Comment: 8 page

    Magnetic field and pressure effects on charge density wave, superconducting, and magnetic states in Lu5_5Ir4_4Si10_{10} and Er5_5Ir4_4Si10_{10}

    Full text link
    We have studied the charge-density-wave (CDW) state for the superconducting Lu5_5Ir4_4Si10_{10} and the antiferromagnetic Er5_5Ir4_4Si10_{10} as variables of temperature, magnetic field, and hydrostatic pressure. For Lu5_5Ir4_4Si10_{10}, the application of pressure strongly suppresses the CDW phase but weakly enhances the superconducting phase. For Er5_5Ir4_4Si10_{10}, the incommensurate CDW state is pressure independent and the commensurate CDW state strongly depends on the pressure, whereas the antiferromagnetic ordering is slightly depressed by applying pressure. In addition, Er5_5Ir4_4Si10_{10} shows negative magnetoresistance at low temperatures, compared with the positive magnetoresistance of Lu5_5Ir4_4Si10_{10}.Comment: 12 pages, including 6 figure

    Chesapeake Bay Nitrogen Fluxes Derived From a Land-Estuarine Ocean Biogeochemical Modeling System: Model Description, Evaluation, and Nitrogen Bonds

    Get PDF
    The Chesapeake Bay plays an important role in transforming riverine nutrients before they are exported to the adjacent continental shelf. Although the mean nitrogen budget of the Chesapeake Bay has been previously estimated from observations, uncertainties associated with interannually varying hydrological conditions remain. In this study, a land-estuarine-ocean biogeochemical modeling system is developed to quantify Chesapeake riverine nitrogen inputs, within-estuary nitrogen transformation processes and the ultimate export of nitrogen to the coastal ocean. Model skill was evaluated using extensive in situ and satellite-derived data, and a simulation using environmental conditions for 2001-2005 was conducted to quantify the Chesapeake Bay nitrogen budget. The 5 year simulation was characterized by large riverine inputs of nitrogen (154 x 109 g N yr-1) split roughly 60: 40 between inorganic: organic components. Much of this was denitrified (34 x 109 g N yr-1) and buried (46 x 109 g N yr-1) within the estuarine system. A positive net annual ecosystem production for the bay further contributed to a large advective export of organic nitrogen to the shelf (91 x 109 g N yr-1) and negligible inorganic nitrogen export. Interannual variability was strong, particularly for the riverine nitrogen fluxes. In years with higher than average riverine nitrogen inputs, most of this excess nitrogen (50-60%) was exported from the bay as organic nitrogen, with the remaining split between burial, denitrification, and inorganic export to the coastal ocean. In comparison to previous simulations using generic shelf biogeochemical model formulations inside the estuary, the estuarine biogeochemical model described here produced more realistic and significantly greater exports of organic nitrogen and lower exports of inorganic nitrogen to the shelf

    Neoplastic transformation of mouse C3H 10T1/2 and Syrian hamster embryo cells by heavy ions

    Get PDF
    C3H 10T1/2 mouse-embryo fibroblasts were used for transformation experiments to study the effectiveness of various heavy ions with energies up to 20 MeV/u and LET values from 170 to 16.000 keV/μm. The transformation frequency per unit absorbed dose decreased with increasing ionization density; at the highest values of LET we found a decrease even of the transformation efficiency per unit fluence. Uranium ions at energies of 5, 9, and 16.3 MeV/u did not induced any transformation. In additional studies piimary Syrian hamster embryo cells (SHE) were exposed to heavy ions in order to characterize cytological and molecular changes which may be correlated with neoplastic transformation. Growth behaviour, chromosomal status, tumorigenicity in nude mice, and expression of oncogenes of transformed cell lines were examined

    Anisotropic Transport of Quantum Hall Meron-Pair Excitations

    Full text link
    Double-layer quantum Hall systems at total filling factor νT=1\nu_T=1 can exhibit a commensurate-incommensurate phase transition driven by a magnetic field B∥B_{\parallel} oriented parallel to the layers. Within the commensurate phase, the lowest charge excitations are believed to be linearly-confined Meron pairs, which are energetically favored to align with B∥B_{\parallel}. In order to investigate this interesting object, we propose a gated double-layer Hall bar experiment in which B∥B_{\parallel} can be rotated with respect to the direction of a constriction. We demonstrate the strong angle-dependent transport due to the anisotropic nature of linearly-confined Meron pairs and discuss how it would be manifested in experiment.Comment: 4 pages, RevTex, 3 postscript figure

    Constraints on ultracompact minihalos from extragalactic {\gamma}-ray background

    Full text link
    It has been proposed that ultracompact minihalos (UCMHs) might be formed in earlier epoch. If dark matter consists of Weakly Interacting Massive Particles (WIMPs), UCMHs can be treated as the {\gamma}-ray sources due to dark matter annihilation within them. In this paper, we investigate the contributions of UCMHs formed during three phase transi- tions (i.e., electroweak symmetry breaking, QCD confinement and e+ e- annihilation) to the extragalactic {\gamma}-ray background. Moreover, we use the Fermi-LAT observation data of the extragalactic {\gamma}-ray background to get the constraints on the current abundance of UCMHs produced during these phase transitions. We also compare these results with those obtained from Cosmic Microwave Background (CMB) observations and find that the constraints from the Fermi-LAT are more stringent than those from CMBComment: 13 pages, 4 figures, 1 tabl

    Description of surfaces associated with CPN−1CP^{N-1} sigma models on Minkowski space

    Full text link
    The objective of this paper is to construct and investigate smooth orientable surfaces in RN2−1R^{N^2-1} by analytical methods. The structural equations of surfaces in connection with CPN−1CP^{N-1} sigma models on Minkowski space are studied in detail. This is carried out using moving frames adapted to surfaces immersed in the su(N)su(N) algebra. The first and second fundamental forms of this surface as well as the relations between them as expressed in the Gauss-Weingarten and Gauss-Codazzi-Ricci equations are found. The Gaussian curvature, the mean curvature vector and the Willmore functional expressed in terms of a solution of CPN−1CP^{N-1} sigma model are obtained. An example of a surface associated with the CP1CP^1 model is included as an illustration of the theoretical results.Comment: 19 pages, 1 figure; shorter version, some typos and minor mistakes correcte
    • …
    corecore