213,434 research outputs found

    Electron Spectral Functions of Reconstructed Quantum Hall Edges

    Full text link
    During the reconstruction of the edge of a quantum Hall liquid, Coulomb interaction energy is lowered through the change in the structure of the edge. We use theory developed earlier by one of the authors [K. Yang, Phys. Rev. Lett. 91, 036802 (2003)] to calculate the electron spectral functions of a reconstructed edge, and study the consequences of the edge reconstruction for the momentum-resolved tunneling into the edge. It is found that additional excitation modes that appear after the reconstruction produce distinct features in the energy and momentum dependence of the spectral function, which can be used to detect the presence of edge reconstruction.Comment: RevTeX, 5 pages, 4 figures; replaced with the published version; journal reference adde

    Q-Dependent Susceptibilities in Ferromagnetic Quasiperiodic Z-Invariant Ising Models

    Full text link
    We study the q-dependent susceptibility chi(q) of a series of quasiperiodic Ising models on the square lattice. Several different kinds of aperiodic sequences of couplings are studied, including the Fibonacci and silver-mean sequences. Some identities and theorems are generalized and simpler derivations are presented. We find that the q-dependent susceptibilities are periodic, with the commensurate peaks of chi(q) located at the same positions as for the regular Ising models. Hence, incommensurate everywhere-dense peaks can only occur in cases with mixed ferromagnetic-antiferromagnetic interactions or if the underlying lattice is aperiodic. For mixed-interaction models the positions of the peaks depend strongly on the aperiodic sequence chosen.Comment: LaTeX2e, 26 pages, 9 figures (27 eps files). v2: Misprints correcte

    Edge Excitations and Non-Abelian Statistics in the Moore-Read State: A Numerical Study in the Presence of Coulomb Interaction and Edge Confinement

    Full text link
    We study the ground state and low-energy excitations of fractional quantum Hall systems on a disk at filling fraction ν=5/2\nu = 5/2, with Coulomb interaction and background confining potential. We find the Moore-Read ground state is stable within a finite but narrow window in parameter space. The corresponding low-energy excitations contain a fermionic branch and a bosonic branch, with widely different velocities. A short-range repulsive potential can stabilize a charge +e/4+e/4 quasihole at the center, leading to a different edge excitation spectrum due to the change of boundary conditions for Majorana fermions, clearly indicating the non-Abelian nature of the quasihole.Comment: 4 pages, 3 figures. New version shortened for PRL. Corrected typo

    Many-particle theory of nuclear systems with application to neutron star matter

    Get PDF
    The energy-density relation was calculated for pure neutron matter in the density range relevant for neutron stars, using four different hard-core potentials. Calculations are also presented of the properties of the superfluid state of the neutron component, along with the superconducting state of the proton component and the effects of polarization in neutron star matter

    Higher-order vortex solitons, multipoles, and supervortices on a square optical lattice

    Full text link
    We predict new generic types of vorticity-carrying soliton complexes in a class of physical systems including an attractive Bose-Einstein condensate in a square optical lattice (OL) and photonic lattices in photorefractive media. The patterns include ring-shaped higher-order vortex solitons and supervortices. Stability diagrams for these patterns, based on direct simulations, are presented. The vortex ring solitons are stable if the phase difference \Delta \phi between adjacent solitons in the ring is larger than \pi/2, while the supervortices are stable in the opposite case, \Delta \phi <\pi /2. A qualitative explanation to the stability is given.Comment: 9 pages, 4 figure
    • …
    corecore