Many-Particle Theory of Nuclear Systems with Application to Neutron Star Matter

Grantfonfract Number:
NEAKA-19-005-006, Supplement No. 2

Grant Duration: December 1, 1973 - November 30, 1974.
December 16, 1974

Signature

Dr. Dennis Ac-Ghatiatakal
Principal Investigator

Signature

Department of physics
Southern Branch Post Office, Box 9365 Southern University Baton Rouge, Louisiana 70813

Telephone: 504-771-3180

Introduction
In this report, the progress we have made on the following projects during the period of this grant, with particular emphasis on the work carried out since submitting the semi-annual report in June 1974:
A. Calculation of the energy-density relation for pure neutron matter in the density range relevant for neutron stars using four different hard-core potentials.
B. Calculation of the properties of the superfluid state of the neutron component and the superconducting state of the proton component and the effects of polarization in neutron star matter.

Since the preparation of the semi-annual status report, we have been able to obtain a better method of constrained minimization of energy. This new method gives energies considerably lower than those reported in the semi annual report. Therefore we have adopted this method and carried out the full range of calculations for OhmuraMorita - Yamada• (OMY-4), standard hard core (SHC), Reid Hard Core (RHC) and HamadaJohnston (HJ) potentials as outlined in the proposal.

The correlation factor used in our calculation has the following form:

$$
f(r)=\left\{\begin{array}{c}
{\left[1-e^{-\mu_{1}\left(r_{-}-r_{c}\right)}\right]\left[1+r e^{-\mu_{2}\left(r-r_{c}\right)}\right], r>r_{c}} \tag{03}\\
0
\end{array}, \quad{ }^{1}, \quad r_{c}\right.
$$

The choice of this threemarameter correlation factor is based on considerable numerical. experience involving the use of two simpler correlation factors; A two-parameter form (C2) which can be obtained from (C3) by choosing $\mu_{1}=\mu_{2}$ and a one -parameter form (C1) obtained from $(C J)$ when $\gamma=0$. We have foul that when we determine μ in (C, f) by energy minimization, this is associated with the violation of several of the conditions discussed in the semi annual report, except in the low -density region. The additional flexibility of (C2) enables us to extend the region, where the conditions are satisfied, beyond the 10 densities. But (C 2) turns out to be inadequate in the moderate to high density region. For example, it has been found in our earlier nuclear matter calculation using the SHC potential that in order to extend the region of validity of the method up to and beyond the region of equilibrium density, we have to use the three-parameter form (C3). It should also be noted that the magnitude of the cluster correction ε_{3} relative to ε_{2} progressively diminishes as we moved from (C1) to (C2) to (C3) in our calculations. These remarks summarize some important general features of our numerical experience in neutron matter and symmetrical nuclear matter calculations.

The necessary conditions on the radial distribution function as well as other physically motivated conditions on the trial wave function discussed in the semi annual report are sumnarized below for convenience
(IA)
$\Delta N=0$
(Normalization condition or structure-factor sum rule to lowest order)
(IB) $\overline{\triangle N}=0$
(II) $S(0)=0$ (Structure-factor sum rule)
(III) $S(k) \geqslant 0$ (Structure-factor inequality)
(IV) $I_{C} \leq 1.243$ (Coulomb inequality)
(VA) $I_{B}=0$ (Pauli condition averaged over the fermi sea)
(VB) $\bar{I}_{B}=0$ (Pauli condition for the "average pair")
We recall that some of these are mutually exclusive, if we attempt to impose all of them exactly on a state-independent correlation factor. However, we may try to choose a subset of these to be imposed exactly and hope to have the results thus obtained satisfy the remaining ones approximately. Our objective is to seek the best one among the various procedures that are possible within this general framework - best, in the sense that it gives the lowest energy.

In order to obtain a calculational method which is reliable in the high-density region, we chose to try different procedures first at the density corresponding to $k_{F}=3.5 \mathrm{fm}^{-1}$ using the OMY-4 potential. The difference in the methods is due to different choices of constrainis on the energy minimization as described below. Method A1. At each k_{F}, the parameter \mathcal{V} in the correlation factor $\left\{\left(\mu_{1}, \mu_{2}, \gamma ; \gamma\right)\right.$ is determined by the condition (IA), for every chosen set of values ($\left.\mu \mu_{1}, \mu_{2}\right)$ With $\gamma=\bar{\gamma}$ thus determined, we find that for a given μ_{z}, energy $\varepsilon \equiv \varepsilon_{F}+\varepsilon_{2}+\varepsilon_{3}$ exhibits a minimum as a function of μ_{1} at some value μ_{1}. The two-body approximation for energy, $\left(\varepsilon_{F}+\varepsilon_{2}\right)$, also has a minimum with respect to μ_{1} at approximately the same value $\bar{\mu}_{1}$. Therefore, we determine $\mu_{1}=\bar{\mu}_{1}$ by minimizing $\left(\varepsilon_{F}+\dot{\varepsilon}_{2}\right)$. The values of
$\mathcal{E}\left(k_{F}, \bar{r}_{1}, r_{2}, \bar{\gamma}\right), \mathrm{s}(0)$ and rome other associated quantities defined in the semiannual report, calculated for various values of μ_{2} with $k_{F}=3.5 \mathrm{fm}^{-1}$ are given in Table A-1. We then plot $S(0)$ as a function of γ_{2} to determine $\Gamma_{2}=\gamma_{2}^{0}$ where $S(0)=0$. But, it is seen from Table A-1 that $\mathrm{S}(0)$ never reaches zero. At somewhat lower densities, $k_{F}<3.0 \mathrm{fm}^{-1}, \mathrm{~S}(0)$ crosses over from a negative value to a positive value at some r_{2}. At $k_{F}=3.5 \mathrm{fm}^{-1}$, we have to be satisfied with choosing γ_{2}^{0} as the value where $S(o)$ is closest to zero, this value is $\mu_{2}^{0}=11.90 \mathrm{fm}^{-1}$ 。 At this F_{2}°, the other parameters $\gamma=\gamma^{\circ}$ and $r_{1}=r_{1}^{\circ}$ are redetermined from the condition (IA) and the minimization of ε respectively. In this manner, we arrive at the optimum set of parameters $\left(\mu_{1}^{c}, \mu_{2}^{c}, 8^{\circ}\right)$ for the correlation factor at each density. For. $k_{F}=3,5 \mathrm{fm}^{-1}$ and the oMY-4 potential, the optimum set is (B.2 3fm, 11.90 fin $^{-1}, 1.897$) . The corresponding values for energy and other related quantities are entered under method (AI) in Table A.2. We note that $I_{C}=0.811$, which satisfies condition (IV), namely, the Coulomb inequality. By calculating $S(k)$ for a wide range of k values, we have also verified that condition (III), namely, the structure-factor inequality, is satisfied by the optimum correlation factor $f\left(\mu_{1}^{0}, \nu_{2}^{0}, \gamma^{0}, \tau\right)$. It also satisfies the Pauli condition approximately since $\left|I_{B}\right|=0.011$. Finally, the correlation parameter $|\bar{\xi}|=0.112$, is sufficiently small indicating good convergence, especially since the ratios R_{c} and $R_{s}(0)$ are also small. Method A2. In this method, conditimon (VA) is used instead of (IA) to determine $\gamma=\gamma^{\circ}$ otherwise the procedure in method Λ is followed. For the OMY-4 potential, the results obtained at $K_{F}=3.5 \mathrm{fm}^{-1}$ using this method are given in Table A-2. We note that the energy obtained by this method, namely, $\varepsilon=1219 \mathrm{Mevj}$ s higher than the value $\varepsilon=1022 \mathrm{Mel}$ obtained by method A1. Furthermore, this energy is associated with $S(0)=-0.091$ compared to $S(0)=-0.007$ for method Al. Therefore method AI is better than method $\Lambda 2$.
Method A3. The condition $\zeta=0$ is used to determine $\gamma=\gamma^{\circ}$ in this method. (In this case, 2 AN) may be assumed to play the role of the "smallness parameter."). Other-
wise the procedure in the two previous methods is followed. The results given in Table $A-2$ for $K_{F}=3.5 \mathrm{fm}^{-1}$ and $O M Y-4$ potential show that with $E=1156$ Mevand $S(0)=-0.042$,
; this method is better than A2, but still not as good as Al.
We have carried out calculations using two other methods in which the condition determining γ is changed to (IB) and (VB) respectively. These also result in values of \mathcal{E} higher than that obtained in method $A l$ and also associated with a greater degree of violation of the condition $S(0)=0$.

The method we adopted in calculating the results reported in this paper is method A, which is an improvement over method Al, as we shall see below. In Al, at a given k_{F}, the value of γ_{1} which minimizes $\left(\mathcal{E}_{F}+\varepsilon_{2}\right)$ or \mathcal{E} for every chosen value of H_{2} is associated with $S(0)<0$, except in the very low density region. However, at that stage of the procedure, we have ignored this violation of the structure-factor sum rule, anticipating that H_{2} will be adjusted to make $S(0)=0$. In studying $S(0)$ as a function of Y_{1} for given γ_{2}, we have observed the behavior schematically indicated in figure A-l. The five sketches are for five different values of γ_{2} namely β_{i}, such that $\beta_{1}<\beta_{2}<\beta_{3}<\beta_{4}<\beta_{5}$. Our numerical results show that the region near the first (deeper) minimm in $S(0)$ is associated with extremely large values of ξ and severe violations of all the conditions, except the one explicitly imposed to determine γ. We are seeking the lowest value of E consistent with $S(0)=0$. But α_{1} is not an accepteble value of μ_{1} even though $S(0)$ is zero there, because of the reasons mentioned above. As the curves (a) through (e) in figure A-I indicate, the value \bar{F}_{1} of μ_{1} where \mathcal{E} is minimum is roughly the same location where $S^{\prime}(0)$ also has a minimum, which is negative unless μ_{2} is sufficiently large. In method $A l$, we take a high enough value of γ_{2} to make $S(0)=0$, so that the situation in curve (d) is obtained. In general, the energy \mathcal{E} increases with μ_{2}. In order to see whether we can get a lower value of \mathbb{E} than obtained in method Ai, we attempt to determine \bar{F}_{1} by not merely minimizing
but by seeking its minimum consistent with $S(0)=0$. For the value $\gamma_{2}=\beta_{1}$, we see that this is not possible because (l) we have already seen that α, is not acceptable and (2) the only other zero of $S(0)$ occurs at a very high γ_{1} where, once again, the value of ξ is found to be too large and some of the conditions are violated. (It may be appropriate here to point out that we have found the following general result in our numerical calculations using various methods: the coulomb inequality and the structure-factor inequality along with the conditions that ξ, I_{B} and ΔM be small would restrict the parameter space to a region where the difference between the values of μ_{1} and μ_{2} is not very large. Thus we find, referring to curves (a) through (e), that the zero of $S(0)$ occurring at a very high μ_{1}
and the zero of $S(0)$ ata kery small $\gamma_{1}=\alpha$, are both unacceptable.) Thus we are forced to go to higher values of μ_{2}. For $\mu_{2}=\beta_{2}$ (curve (b), $s(o)$ is zero at $\mu_{1}=\alpha_{0}$. Note that since $\varepsilon\left(\bar{\beta}_{1}\right)$ is the minimum of $\left.\mathcal{E}\left(\mu_{1}\right), \mathcal{C}\left(\alpha_{0}\right)>\mathcal{(} \bar{\mu}_{1}\right)^{0}$ Now, if we go to curve (C) with $\mu_{2}=\beta_{3}, s(o)$ is zero at two values of μ_{1}, namely α_{1} and α_{2}. The energies are related as $\mathcal{E}\left(\alpha_{2}\right)>\varepsilon\left(\alpha_{3}\right)>\varepsilon\left(\bar{\beta}_{1}\right)$. In curve (d), for $\gamma_{2}=\beta_{4}, \mathrm{~S}(0)=0$ when μ_{1} is α_{2} and α_{4}, with the relation between the energies, $\Sigma\left(\alpha_{2}\right)>\varepsilon\left(\alpha_{4}\right)$. For values of γ_{2} greater than $\beta_{4}, S(0)$ has only the zero at $\gamma_{1}=\alpha_{2}$, since the second minimum in $S(0)$ is already on the positive side and it becomes more positive with increasing μ_{2}. This situation is illustrated in curve (e).

Thus, in method A, for each γ_{2}, we are determining γ_{1} by minimizing \mathcal{E} subject to the condition, $S(0)=0$. The remaining task is to find the minimum of \mathcal{E} in the range of values spanned by $\mathcal{E}\left(\alpha_{2}\right), \mathcal{(}\left(\alpha_{3}\right)$ and $\mathcal{E}\left(\alpha_{4}\right)$ which are $=11$ consistent with the structure-factor sum rule. At some densities we find that the minimum of $\mathcal{E}\left(\mu_{2}\right)$ occurs when $\mu_{2}=\alpha_{0}$. At others, $\mathcal{E}\left(\alpha_{4}\right)$ is the minimum of $\mathcal{E}\left(\mu_{2}\right)$. At still other densities the value of μ_{2} at which $\mathcal{E}\left(\mu_{2}\right)$ is lowest lies between α_{0} and α_{4}. Denoting this minimizing value by $\left.\right|_{2} ^{0}$, we have $\left(\dot{\mu}_{1}^{c} \mu_{2}^{0}, \gamma^{0}\right)$ for the optimum set of parameters, where μ_{1}^{0} is the value of μ_{t} at which $\mathcal{E}\left(\mu_{1}, \mu_{2}^{\circ}\right)$ has the lowest value consistent with $S(0)=0$, as
explained above. The results for $\varepsilon\left(\mu_{1}^{0}, \mu_{2}^{0}, \gamma^{\circ}\right)$ and the associated quantities at $\mathrm{k}_{\mathrm{F}}=3.5 \mathrm{fm}^{-1}$ obtained using the OMY-4 potential are given in table $\mathrm{A}-2$. We note the significant improvement in the results over those from method Al, especially in the value of energy, namely, $E=722.5 \mathrm{Mev}$ compared to $E=1022 \mathrm{Mev}$ from method A1.

I'he results from the calculation for the OMY-4 potential using method for the entire density range $0.25 \mathrm{fm}^{-1} \leq \mathrm{k}_{\mathrm{F}} \leq 5.00 \mathrm{fm}^{-1}$ are given in table $\mathrm{A}-3$. The values of \mathcal{E} determined by this method are plotted against the density parameter k_{F} in figure A-2. The most notable feature of the $\mathcal{E}\left(k_{F}\right)$ curve is the occurrence of a local minimum near $k_{F}=1.75 \mathrm{fm}^{-1}$
and the discontinuity in the slope of $E\left(k_{F}\right)$ near $k_{F}=1.30$ fn $^{-1}$. The energies at all densities, except in the very low density region, determined by our constrained minimization procedure have come out much higher than the results obtained by other authors. The convergence of the cluster series for energy and other associated quantities appears to be excellent judging from the data in table $\dot{A}-3$. One of the most important aspects of our method that emerge from these results is the crucial role played by the structure factor sum rule in achieving this convergence. It is also responsible formaising the energies to such high values. For example, if the condition $s(o)=0$ is ignored, at $k_{\mathrm{F}}=1.5 \mathrm{fm}^{-1}$, we will get $\mathcal{E}=13$ Mev compared to $\mathcal{E}=23$ Mev we have in table $A-3$, for the OMY-4 potential. This effect, of course, becomes more pronounced at higher densities. Thus the answer to the question whether the energies given by method A are reliable depends crucially on the justification for the central importance we have assigned to the structure-factor sum rule. (We may also point out here that once $S(0$) $=0$ is imposed in the manner we have done in method $A, S(k) \geq 0$ is always automatically satisfied. Choosing one of the other zeroes of $S(o)$ leads to a violation of $S(k) \geqslant 0$ for some range of k values and, associated with this, to large values of ξ, except in the very low density region, where a straightforward minimization of $\mathcal{C}\left(\mu_{1}, \mu_{2}\right)$ with respect to μ_{1} and μ_{2} yields a minimum that is consistent with all the conditions.) Since our method is variationa1, it may be contended that
our high values of energy may constitute only a poor upper bound to the true energy. In reply to this criticism, we can only say that our numerical experience as summarized in this report suggests that this is the lowest energy we can obtain for our choice of constraints with the three-parameter correlation factor (C3). We also note that the constraints chosen in method A are not arbitrary, but have been justified by the physical arguments referred to in the original proposal and by the numerical evidence for their central role in obtaining apparently rapid convergence of the energy series and the associated cluster expansions.

The results from the various methods we have attempted indicate that any one of the conditions (IA), (IB), (VA) and (VB) tend to make the correlation parameter ξ small. But we also find that smallness of ξ by itself does not assure the convergence of the cluster expansions. Only if the smallness of ξ is accompanied by the satisfaction of $S(k) \geq 0$, it seems possible to obtain over-all convergnece. In spite of this statement, \boldsymbol{q}^{3} still plays a useful role as an ordering parameter for clustex expansions in the $G B F$ formalism. We have repeated our calculation at $k_{F}=3.5 \mathrm{fm}^{-1}$ For OMY-4 potential using method Al, omitting the term \mathcal{E}_{H} from the expression for \mathcal{E}_{3}. The energy obtained in this way is higher than the value $\mathcal{E}=1022$ Mev given in table A-2. We recall that $E_{I D}$ is a (reducible) four body correlation term whereas all. other terms in \mathcal{E}_{3} contain the effects of (irreducible) three-body correlations. If We are to use the "number of bodies" to classify various orders in the cluster series, we must exclude $\mathcal{E}_{\text {IV }}$ from ε_{3}. But, according to the ξ - classification scheme, $\varepsilon_{I N}$ is of the same order as the other terms constituring \mathcal{E}_{3} and hence must be included in \mathcal{E}_{3} Hence the numerical results mentioned above seem to justify the use of ξ as an ordering parameter for cluster expansions.

The energy per particle of neutron matter calculated using the SHC, RHC and HJ potentials are given in figures $A-3, A-4$, and $A-5$ respectively. These also show local
minima and discontinuity in slope as we have seen for the OMY-4 potential. We cannot yet attach any physical significance to these nonmonotonic regions of the curve for the following reason. The parameter values in the correlation factor vary significantly, with density in these regions as seen from table A-3 for the case of the OMY-4 potential. It is possible that when perturbation corrections $\Delta \varepsilon$ are calculated using these optimum correlation factors, the final result, namely, $\left(\varepsilon_{F}+\varepsilon_{2}+\varepsilon_{3}\right)+\Delta \varepsilon$ when plotted against k_{F}, may not have such local minima or discontinuities in its slope. When $\Delta \varepsilon$ is calculated on the basis of a convergent perturbation expansion, if it is found that the final energy-density curve still displays these features, then only we can consider these as possible indications of phase transitions.

In the meantime, we also need to look critically at our choice of the structure factor-sum rule, namely $S(0)=0$, as a vital constraint in the energy minimization. In particular, we need to assure ourselves that it is realistic to impose that condition on a short range correlation factor and that the raising of energies caused by it is not an artificial effect. We want to emphasize, however, that we have given some physical arguments that justify the use of this condition and also the fact that it definitely helps to obtain better convergence of the cluster expansions in our formalism.

Table A.L: $\varepsilon\left(\bar{F}_{1}, \mu_{2}, \gamma\right)$ and associated nesuct calculated for the oMY-4 poitentises at $k_{F}=3.5 \mathrm{fm}^{-1}$ using method $A 1$.

Table A．2 Comparison of the result obtained from various methods for the oMY－4 potential at $k_{F}=3.5 \mathrm{fm}^{-1}$ ．

Curve (c)

$$
\mu_{2}=\beta_{3}
$$

$S(0)$

$$
\mu_{2}=\beta_{4}
$$

Table A.3: Results (obtained using method A) for ties oMY-4 potential in the density range $0.25 \mathrm{fm}^{-1} \leq k_{F F} \leq 3.00 \mathrm{fm}^{-1}$

RUE SEMFLOGARITHMIC 465730 .
kevfete or esser co.

keutfel a esser co.

MRE SEMI.LOGARITHMIC 465730
 KEUFFEL \& ESSER CO.

B. Effects of Polarization on Neutron Star Matter

The final numerical work on this preliminary study of this subject has been completed. We plan to present a paper on this subject at the APS meeting to be held in Washington, D. C. next April.

We have completed the following additional calculations since our last semiannual report:

1. The three-particle contributions to the normal state energy (per particle) in the density region interested to us has been carefully checked out. They are as following:

At density (expressed
the three particle
in term of $\mathrm{k}_{\mathrm{F}}\left(\mathrm{fm}^{-1}\right)$)

0.25	0.0000
0.50	-0.0012
1.00	-0.0858

These numerical results for normal state indicate that the three-particle contributions in the density region interested to us are indeed sufficient small as compared to their corresponding single and iwo particle contributions to the energy expectation value. That leads us to believe that the three-particle contributions to the energy expectation value is ngligible as compared with the single-and twoparticle contributions in the superfluid state because of the same cluster expansion employed in both cases.
b. The numerical accuracy of the condensation energy calculations were tested by changing our computer programs for those calculation from the lepoint Gaussian integral to the 20 -point Gaussian integral for the enhanced factor $\beta=1.50$ for the calculations mentioned in our last annual report (see Table B-2).

The results are as following:

$$
\begin{gathered}
\text { at density, } \mathrm{k}_{\mathrm{F}}\left(\mathrm{fm}^{-1}\right) \\
0.60 \\
0.96
\end{gathered}
$$

$\varepsilon_{c}(\mathrm{MeV})$

$12-$ PT. G. I.	20-pt. G. I.	Difference
2.0695	2.0642	0.0053
1.1047	1.1095	0.0048

Thus the numerical evaluations for condensation energies are reliable up to the third place after decimal point (the difference is less than one-half of one percent).
3. In addition to the numerical results given in the last two reports, we have made the following two sets of calculations to complete our preliminary study of this subject:
(a) The condensation energy is calculated in such a way that it has the effect of incorporating polarization prior to the short range correlations and superfluidity. Numerically, the condensation energy, ε_{C}, is calculated by using the optimal energy gap, A_{k}, for each given enhanced factor β in both $\varepsilon_{c_{1}}$ and $\varepsilon_{c_{2}}$, but only the $A_{0_{0}}$ in $\mathrm{P}_{\mathrm{k}_{8}}$ is multiplied by β. The results are given in Table (B-1) for enhanced factor $\beta=1.20,1.30$ and 1.40.
(b) The condensation energy is calculated in such a way that it has the effect of incorporating the short range correlations and superfluidity prior to polarization. Numerically, the condensation energy, ε_{c}, is calculated by $\varepsilon_{c}=\varepsilon_{c_{1}}+\varepsilon_{c_{2}}$ (i.e. the whole \mathcal{C}_{2} in $P_{k g}$ is enhanced by the factor β). The results are given in Table ($B-2$) for enhanced factor $\beta=1.15,1.20,1.30$ and 1.40 .
The results of Table ($B-1$) of this report and Table ($B-2$) of the last annual report all seem to indicate that the polarization effect indeed enhances the condensation
energy and the gap function and there is a tendency of the neutron star matter to undergo a first-order phase transition at a relatively lower density region $\left(10^{12}-10^{13} \mathrm{gm}_{\mathrm{cm}}{ }^{-3}\right)$. This preliminary study reaffirms the necessity and interest of a first principle theory study of the problem.

Table ($B-1$)

REPRODUCIBLLITY OF THE
ORIGINAL PAGE IS POOR

FOLDOUT ERAMAE

FOLDOUT FRAME

Table (B-2)
In this set of calculations, the condensation energy, \mathcal{E}_{c}, is calculated by $\varepsilon_{c}=\mathcal{\varepsilon}_{c}$, $+\beta \varepsilon_{\mathcal{L}}$ (i.e. the whole \mathcal{V}_{2} in \mathcal{B}_{k}. is enhanced by the factor β)

REPRODUCIBLITY OF THE ORIGINAL PAGE IS POOR
-21-
FOLDOUT FRAME
FODDOUT PWE:
7

