79 research outputs found
Electrochemically Switchable Multimode Strong Coupling in Plasmonic Nanocavities
The strong-coupling interaction between quantum emitters and cavities provides the archetypical platform for fundamental quantum electrodynamics. Here we show that methylene blue (MB) molecules interact coherently with subwavelength plasmonic nanocavity modes at room temperature. Experimental results show that the strong coupling can be switched on and off reversibly when MB molecules undergo redox reactions which transform them to leuco-methylene blue molecules. In simulations we demonstrate the strong coupling between the second excited plasmonic cavity mode and resonant emitters. However, we also show that other detuned modes simultaneously couple efficiently to the molecular transitions, creating unusual cascades of mode spectral shifts and polariton formation. This is possible due to the relatively large plasmonic particle size resulting in reduced mode splittings. The results open significant potential for device applications utilizing active control of strong coupling
In-orbit background simulation of a type-B CATCH satellite
The Chasing All Transients Constellation Hunters (CATCH) space mission plans
to launch three types of micro-satellites (A, B, and C). The type-B CATCH
satellites are dedicated to locating transients and detecting their
time-dependent energy spectra. A type-B satellite is equipped with lightweight
Wolter-I X-ray optics and an array of position-sensitive multi-pixel Silicon
Drift Detectors. To optimize the scientific payloads for operating properly in
orbit and performing the observations with high sensitivities, this work
performs an in-orbit background simulation of a type-B CATCH satellite using
the Geant4 toolkit. It shows that the persistent background is dominated by the
cosmic X-ray diffuse background and the cosmic-ray protons. The dynamic
background is also estimated considering trapped charged particles in the
radiation belts and low-energy charged particles near the geomagnetic equator,
which is dominated by the incident electrons outside the aperture. The
simulated persistent background within the focal spot is used to estimate the
observation sensitivity, i.e. 4.2210 erg cm s
with an exposure of 10 s and a Crab-like source spectrum, which can be
utilized further to optimize the shielding design. The simulated in-orbit
background also suggests that the magnetic diverter just underneath the optics
may be unnecessary in this kind of micro-satellites, because the dynamic
background induced by charged particles outside the aperture is around 3 orders
of magnitude larger than that inside the aperture.Comment: 24 pages, 13 figures, 7 tables, accepted for publication in
Experimental Astronom
Simulation Studies for the First Pathfinder of the CATCH Space Mission
The Chasing All Transients Constellation Hunters (CATCH) space mission is an
intelligent constellation consisting of 126 micro-satellites in three types (A,
B, and C), designed for X-ray observation with the objective of studying the
dynamic universe. Currently, we are actively developing the first Pathfinder
(CATCH-1) for the CATCH mission, specifically for type-A satellites. CATCH-1 is
equipped with Micro Pore Optics (MPO) and a 4-pixel Silicon Drift Detector
(SDD) array. To assess its scientific performance, including the effective area
of the optical system, on-orbit background, and telescope sensitivity, we
employ the Monte Carlo software Geant4 for simulation in this study. The MPO
optics exhibit an effective area of cm at the focal spot for 1 keV
X-rays, while the entire telescope system achieves an effective area of
cm at 1 keV when taking into account the SDD detector's detection
efficiency. The primary contribution to the background is found to be from the
Cosmic X-ray Background. Assuming a 625 km orbit with an inclination of
, the total background for CATCH-1 is estimated to be
counts s in the energy range of 0.5--4 keV. Based on
the background within the central detector and assuming a Crab-like source
spectrum, the estimated ideal sensitivity could achieve erg
cm s for an exposure of 10 s in the energy band of 0.5--4
keV. Furthermore, after simulating the background caused by low-energy charged
particles near the geomagnetic equator, we have determined that there is no
need to install a magnetic deflector
Maternal exposure to ambient air pollution and congenital heart defects in China
Background: Evidence of maternal exposure to ambient air pollution on congenital heart defects (CHD) has been mixed and are still relatively limited in developing countries. We aimed to investigate the association between maternal exposure to air pollution and CHD in China.Method: This longitudinal, population-based, case-control study consecutively recruited fetuses with CHD and healthy volunteers from 21 cities, Southern China, between January 2006 and December 2016. Residential address at delivery was linked to random forests models to estimate maternal exposure to particulate matter with an aerodynamic diameter of ≤1 µm (PM1), ≤2.5 µm, and ≤10 µm as well as nitrogen dioxides, in three trimesters. The CHD cases were evaluated by obstetrician, pediatrician, or cardiologist, and confirmed by cardia ultrasound. The CHD subtypes were coded using the International Classification Diseases. Adjusted logistic regression models were used to assess the associations between air pollutants and CHD and its subtypes.Results: A total of 7055 isolated CHD and 6423 controls were included in the current analysis. Maternal air pollution exposures were consistently higher among cases than those among controls. Logistic regression analyses showed that maternal exposure to all air pollutants during the first trimester was associated with an increased odds of CHD (e.g., an interquartile range [13.3 µg/m3] increase in PM1 was associated with 1.09-fold ([95% confidence interval, 1.01-1.18]) greater odds of CHD). No significant associations were observed for maternal air pollution exposures during the second trimester and the third trimester. The pattern of the associations between air pollutants and different CHD subtypes was mixed.Conclusions: Maternal exposure to greater levels of air pollutants during the pregnancy, especially the first trimester, is associated with higher odds of CHD in offspring. Further longitudinal well-designed studies are warranted to confirm our findings
Insight-HXMT observations of Swift J0243.6+6124 during its 2017-2018 outburst
The recently discovered neutron star transient Swift J0243.6+6124 has been
monitored by {\it the Hard X-ray Modulation Telescope} ({\it Insight-\rm HXMT).
Based on the obtained data, we investigate the broadband spectrum of the source
throughout the outburst. We estimate the broadband flux of the source and
search for possible cyclotron line in the broadband spectrum. No evidence of
line-like features is, however, found up to . In the absence of
any cyclotron line in its energy spectrum, we estimate the magnetic field of
the source based on the observed spin evolution of the neutron star by applying
two accretion torque models. In both cases, we get consistent results with
, and peak luminosity of which makes the source the first Galactic ultraluminous
X-ray source hosting a neutron star.Comment: publishe
- …