383 research outputs found

    An Inactivation Stabilizer of the Na+ Channel Acts as an Opportunistic Pore Blocker Modulated by External Na+

    Get PDF
    The Na+ channel is the primary target of anticonvulsants carbamazepine, phenytoin, and lamotrigine. These drugs modify Na+ channel gating as they have much higher binding affinity to the inactivated state than to the resting state of the channel. It has been proposed that these drugs bind to the Na+ channel pore with a common diphenyl structural motif. Diclofenac is a widely prescribed anti-inflammatory agent that has a similar diphenyl motif in its structure. In this study, we found that diclofenac modifies Na+ channel gating in a way similar to the foregoing anticonvulsants. The dissociation constants of diclofenac binding to the resting, activated, and inactivated Na+ channels are ∼880 μM, ∼88 μM, and ∼7 μM, respectively. The changing affinity well depicts the gradual shaping of a use-dependent receptor along the gating process. Most interestingly, diclofenac does not show the pore-blocking effect of carbamazepine on the Na+ channel when the external solution contains 150 mM Na+, but is turned into an effective Na+ channel pore blocker if the extracellular solution contains no Na+. In contrast, internal Na+ has only negligible effect on the functional consequences of diclofenac binding. Diclofenac thus acts as an “opportunistic” pore blocker modulated by external but not internal Na+, indicating that the diclofenac binding site is located at the junction of a widened part and an acutely narrowed part of the ion conduction pathway, and faces the extracellular rather than the intracellular solution. The diclofenac binding site thus is most likely located at the external pore mouth, and undergoes delicate conformational changes modulated by external Na+ along the gating process of the Na+ channel

    Block of Tetrodotoxin-resistant Na+ Channel Pore by Multivalent Cations: Gating Modification and Na+ Flow Dependence

    Get PDF
    Tetrodotoxin-resistant (TTX-R) Na+ channels are much less susceptible to external TTX but more susceptible to external Cd2+ block than tetrodotoxin-sensitive (TTX-S) Na+ channels. Both TTX and Cd2+ seem to block the channel near the “DEKA” ring, which is probably part of a multi-ion single-file region adjacent to the external pore mouth and is involved in the selectivity filter of the channel. In this study we demonstrate that other multivalent transitional metal ions such as La3+, Zn2+, Ni2+, Co2+, and Mn2+ also block the TTX-R channels in dorsal root ganglion neurons. Just like Cd2+, the blocking effect has little intrinsic voltage dependence, but is profoundly influenced by Na+ flow. The apparent dissociation constants of the blocking ions are always significantly smaller in inward Na+ currents than those in outward Na+ current, signaling exit of the blocker along with the Na+ flow and a high internal energy barrier for “permeation” of these multivalent blocking ions through the pore. Most interestingly, the activation and especially the inactivation kinetics are slowed by the blocking ions. Moreover, the gating changes induced by the same concentration of a blocking ion are evidently different in different directions of Na+ current flow, but can always be correlated with the extent of pore block. Further quantitative analyses indicate that the apparent slowing of channel activation is chiefly ascribable to Na+ flow–dependent unblocking of the bound La3+ from the open Na+ channel, whereas channel inactivation cannot happen with any discernible speed in the La3+-blocked channel. Thus, the selectivity filter of Na+ channel is probably contiguous to a single-file multi-ion region at the external pore mouth, a region itself being nonselective in terms of significant binding of different multivalent cations. This region is “open” to the external solution even if the channel is “closed” (“deactivated”), but undergoes imperative conformational changes during the gating (especially the inactivation) process of the channel

    Text difficulty in extensive reading: Reading comprehension and reading motivation

    Get PDF
    This study investigates the effects of the text difficulty of extensive reading materials on the reading comprehension and reading motivation of English as a foreign language (EFL) vocational high school students in Taiwan. Two experimental groups were assigned, on an individual basis, to read graded readers at either one level below (‘i-1’) or one level beyond (‘i+1’) their current level, while a control group followed their regular curriculum. The results showed that after treatment, the ‘i-1’ group improved their overall comprehension and the subset of literal comprehension. They also outperformed the ‘i+1’ group on the same measures. For reading motivation, the ‘i+1’ group’s overall motivation was promoted. Both groups enhanced their reading engagement, while only the ‘i-1’ group inhibited reading avoidance. Moreover, the ‘i+1’ group outperformed the ‘i-1’ group in the perception of self-efficacy. Overall, the ‘i-1’ level yielded better effects on reading comprehension; the ‘i+1’ level, on reading motivation

    High-performance and long-term stability of mesoporous Cu-doped TiO2 microsphere for catalytic CO oxidation

    Get PDF
    Although the low-temperature reaction mechanism of catalytic CO oxidation reaction remains unclear, the active sites of copper play a crucial role in this mechanism. One-step aerosol-assisted self-assembly (AASA) process has been developed for the synthesis of mesoporous Cu-doped TiO2 microspheres (CuTMS) to incorporate copper into the TiO2 lattice. This strategy highly enhanced the dispersion of copper from 41.10 to 83.65%. Long-term stability of the as-synthesized CuTMS materials for catalytic CO oxidation reaction was monitored using real-time mass spectrum. Isolated CuO and Cu-O-Ti were formed as determined by X-ray photoelectron spectroscopy (XPS). The formation of the Cu-O-Ti bonds in the crystal lattice changes the electron densities of Ti(IV) and O, causing a subsequent change in Ti(III)/Ti(IV) and Onon/OTotal ratio. 20CuTMS contained the highest lattice distortion (0.44) in which the Onon/OTotal ratio is lowest (0.18). This finding may be attributed to the absolute formation of the Cu-O-Ti bonds in the crystal lattice. However, the decrease of Ti(III)/Ti(IV) ratio to about 0.35 of 25CuTMS was caused by the CuO cluster formation on the surface. N2O titration-assisted H2 temperature-programmed reduction and in-situ Fourier transform infrared spectroscopy revealed the properties of copper and effects of active sites

    The exchanged EF-hands in calmodulin and troponin C chimeras impair the Ca2+-induced hydrophobicity and alter the interaction with Orai1: a spectroscopic, thermodynamic and kinetic study

    Get PDF
    Background Calmodulin (CaM) plays an important role in Ca2+-dependent signal transduction. Ca2+ binding to CaM triggers a conformational change, forming a hydrophobic patch that is important for target protein recognition. CaM regulates a Ca2+-dependent inactivation process in store-operated Ca2+entry, by interacting Orai1. To understand the relationship between Ca2+-induced hydrophobicity and CaM/Orai interaction, chimera proteins constructed by exchanging EF-hands of CaM with those of Troponin C (TnC) are used as an informative probe to better understand the functionality of each EF-hand. Results ANS was used to assess the context of the induced hydrophobic surface on CaM and chimeras upon Ca2+ binding. The exchanged EF-hands from TnC to CaM resulted in reduced hydrophobicity compared with wild-type CaM. ANS lifetime measurements indicated that there are two types of ANS molecules with rather distinct fluorescence lifetimes, each specifically corresponding to one lobe of CaM or chimeras. Thermodynamic studies indicated the interaction between CaM and a 24-residue peptide corresponding to the CaM-binding domain of Orail1 (Orai-CMBD) is a 1:2 CaM/Orai-CMBD binding, in which each peptide binding yields a similar enthalpy change (ΔH = −5.02 ± 0.13 kcal/mol) and binding affinity (Ka = 8.92 ± 1.03 × 105 M−1). With the exchanged EF1 and EF2, the resulting chimeras noted as CaM(1TnC) and CaM(2TnC), displayed a two sequential binding mode with a one-order weaker binding affinity and lower ΔH than that of CaM, while CaM(3TnC) and CaM(4TnC) had similar binding thermodynamics as CaM. The dissociation rate constant for CaM/Orai-CMBD was determined to be 1.41 ± 0.08 s−1 by rapid kinetics. Stern-Volmer plots of Orai-CMBD Trp76 indicated that the residue is located in a very hydrophobic environment but becomes more solvent accessible when EF1 and EF2 were exchanged. Conclusions Using ANS dye to assess induced hydrophobicity showed that exchanging EFs for all Ca2+-bound chimeras impaired ANS fluorescence and/or binding affinity, consistent with general concepts about the inadequacy of hydrophobic exposure for chimeras. However, such ANS responses exhibited no correlation with the ability to interact with Orai-CMBD. Here, the model of 1:2 binding stoichiometry of CaM/Orai-CMBD established in solution supports the already published crystal structure

    A positive feedback loop of IL-17B-IL-17RB activates ERK/β-catenin to promote lung cancer metastasis

    Get PDF
    Inflammation contributes to the development and progression of cancer. Interleukin-17 (IL-17) is an inflammatory cytokine that functions in inflammation and cancer, as well as several other cellular processes. In this study, we investigated the roles and the prognostic value of IL-17 and the IL-17 receptor (IL-17R) in lung cancer. Gene expression microarray analysis followed by Kaplan-Meier survival curve showed that IL-17B was associated with poor patient survival, and IL-17B receptor (IL-17RB) was up-regulated in lung cancer tissue compared with normal tissue. Expression of IL-17RB was associated with lymph node metastasis and distant metastasis, as well as poor patient survival. IL-17RB overexpression significantly increased cancer cell invasion/migration and metastasis in vitro and in vivo. IL-17RB induced ERK phosphorylation, resulting in GSK3β inactivation and leading to β-catenin up-regulation. IL-17RB also participated in IL-17B synthesis via the ERK pathway. IL-17RB activation is required for IL-17B-mediated ERK phosphorylation. Taken together, IL-17B-IL-17RB signaling and ERK participate in a positive feedback loop that enhances invasion/migration ability in lung cancer cell lines. IL-17RB may therefore serve as an independent prognostic factor and a therapeutic target for lung cancer

    Multiple Bony Injuries on Bone Scan in a Case of Unsuspected Child Abuse

    Get PDF
    This case is described of an eleven-month-old infant with lower limbs swelling and the left elbow skeletal malformation following a fall. The radionuclide bone scan was performed to exclude bone infection or congenital skeletal anomaly. The images unexpectedly showed multiple increased radioactive foci throughout the whole body. It was a strong probability of child abuse. All lesions are readily apparent on the following plain film radiographs and MRI

    Indigenous Case of Disseminated Histoplasmosis, Taiwan

    Get PDF
    We report the first indigenous case of disseminated histoplasmosis in Taiwan diagnosed by histopathology of bone marrow, microbiologic morphology, and PCR assay of the isolated fungus. This case suggests that histoplasmosis should be 1 of the differential diagnoses of opportunistic infections in immunocompromised patients in Taiwan

    Biomechanical investigation of flexor digitorum tendons in trigger finger patients using sonography

    Get PDF
    Trigger finger (TF) has generally been ascribed to primary changes in the first annular (A1) pulley. Repeated friction between the A1 pulley and flexor digitorum tendons could result in swelling of soft tissues, and thus it has been speculated that TF affects tendons’ biomechanical behaviors. However, the pathology mechanism related to these behaviors remains unclear. The purposes of this study are to understand (1) the variations in the morphologies of the flexor digitorum profundus (FDP) and flexor digitorum superficialis (FDS) between normal fingers and TFs, (2) the differences in the biomechanical behaviors of the FDP and FDS between normal fingers and TFs in various finger flexion positions, and (3) the effect of various finger positions on the biomechanical behaviors of the FDP and FDS
    corecore