1,312 research outputs found
Effect of the flow leading slats obliquity on the thermal performance of air-cooled condensers in a power plant
Paper presented at the 8th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Mauritius, 11-13 July, 2011.Ambient winds may bring on poor fan performance and
deteriorated heat rejection of the air-cooled condensers in a
power plant. The disadvantageous wind impacts can be
weakened thanks to the flow field leading of the wind. By
introducing a radiator model to the fin-tube bundles, the airside
fluid and heat flow in air-cooled condensers with a flow
guiding device in a representative 2 Ă— 600MW direct dry
cooling power plant are modeled and calculated. The flow rate
and heat rejection of the individual condenser cells and the aircooled
condensers with flow guiding devices at different slat
obliquities are obtained and compared. The results show that
the flow rate and heat rejection of the air-cooled condensers
both increase owing to the setup of the flow guiding device.
The low flow guiding slats obliquity is superior to the high one
for the thermo-flow performances. For the upwind condenser
cells, the flow and heat transfer rates vary widely due to the
flow field leading of the ambient winds by the flow guiding
device especially at the lowered obliquity. It can be of use for
the optimal design and operation of air-cooled condensers in a
power plant.mp201
Establishing the relationship between galaxies and dark matter
We use two methods to establish the relationship between galaxies and dark matter halos. One is based the conditional luminosity function model, which links galaxies and dark matter halos by matching the number density and clustering properties of galaxies with those of dark matter halos in the current CDM model. The second is based on galaxy systems identified from large redshift surveys of galaxies. The galaxy - dark halo relationships established by these two methods match well, and can provide important constraints on how galaxies form and evolve in the univers
Tortoise coordinate and Hawking effect in a dynamical Kerr black hole
Hawking effect from a dynamical Kerr black hole is investigated using the
improved Damour-Ruffini method with a new tortoise coordinate transformation.
Hawking temperature of the black hole can be obtained point by point at the
event horizon. It is found that Hawking temperatures of different points on the
surface are different. Moreover, the temperature does not turn to zero while
the dynamical black hole turns to an extreme one.Comment: 7 page
Nanofabrication of Surface-Enhanced Raman Scattering Device by an Integrated Block-Copolymer and Nanoimprint Lithography Method
The integration of block-copolymers and nanoimprint lithography presents a novel and cost-effective approach to achieving nanoscale patterning capabilities. The authors demonstrate the fabrication of a surface-enhanced Raman scattering device using templates created by the block-copolymers nanoimprint lithography integrated method
Photorefractive recording in LiNbO3 : Mn
The dynamic range, sensitivity, and dark decay of holographic recording of wavelength 458 nm in LiNbO3 crystals doped with 0.2-at. % Mn with different oxidation states have been measured. The measured sensitivity is 0.5 cm/J and is found to be independent of the oxidation state, and the largest M/# obtained is 12/mm (extraordinary light polarization; light wavelength, 458 nm). This combination of very large M/# and high sensitivity is in strong contrast with results for LiNbO3:Fe for which a direct trade-off exists between M/# and sensitivity. The activation energy of the dark decay of holograms stored in these LiNbO3:Mn crystals is similar to1.0 eV, which is characteristic of proton compensation and leads to a projected lifetime of holograms of three years at room temperature. (C) 2002 Optical Society of America
B -> J/psi K^* Decays in QCD Factorization
The hadronic decay B -> J K^* is analyzed within the framework of QCD
factorization. The spin amplitudes A_0, A_\parallel and A_\perp in the
transversity basis and their relative phases are studied using various
different form-factor models for B-K^* transition. The effective parameters
a_2^h for helicity h=0,+,- states receive different nonfactorizable
contributions and hence they are helicity dependent, contrary to naive
factorization where a_2^h are universal and polarization independent. QCD
factorization breaks down even at the twist-2 level for transverse hard
spectator interactions. Although a nontrivial strong phase for the A_\parallel
amplitude can be achieved by adjusting the phase of an infrared divergent
contribution, the present QCD factorization calculation cannot say anything
definite about the phase phi_\parallel. Unlike B -> J/psi K decays, the
longitudinal parameter a_2^0 for B -> J/psi K^* does not receive twist-3
corrections and is not large enough to account for the observed branching ratio
and the fraction of longitudinal polarization. Possible enhancement mechanisms
for a_2^0 are discussed.Comment: 21 pages, 1 figure, a table and a reference added, some typos
correcte
Wigner Crystals Phases in Bilayer Quantum Hall Systems
(This is a substantially shortened version of the original abstract:)
The Wigner crystal phase diagram of the bilayer systems have been studied
using variational methods. Five crystal phases are obtained. As the layer
spacing increases, the system will undergo a sequence of phase transitions. A
common feature of most bilayer Wigner crystals is that they have mixed
(pseudo-spin) ferromagnetic and antiferromagnetic order.Comment: 19 figures. Figures will be provided upon request. Submitted in PRB
in Nov 94
Superconductivity and single crystal growth of Ni0:05TaS2
Superconductivity was discovered in a Ni0:05TaS2 single crystal. A Ni0:05TaS2
single crystal was successfully grown via the NaCl/KCl flux method. The
obtained lattice constant c of Ni0:05TaS2 is 1.1999 nm, which is significantly
smaller than that of 2H-TaS2 (1.208 nm). Electrical resistivity and
magnetization measurements reveal that the superconductivity transition
temperature of Ni0:05TaS2 is enhanced from 0.8 K (2H-TaS2) to 3.9 K. The
charge-density-wave transition of the matrix compound 2H-TaS2 is suppressed in
Ni0:05TaS2. The success of Ni0:05TaS2 single crystal growth via a NaCl/KCl flux
demonstrates that NaCl/KCl flux method will be a feasible method for single
crystal growth of the layered transition metal dichalcogenides.Comment: 13pages, 6 figures, Published in SS
Photorefractive properties of lithium niobate crystals doped with manganese
The photorefractive properties of lithium niobate crystals doped with manganese (Mn) have been investigated. It is found that the effect of dark decay due to electron tunneling, which is the limiting factor of the highest practical doping level, is less in LiNbO3:Mn than in LiNbO3:Fe, and higher doping levels can be used in LiNbO3:Mn to achieve larger dynamic range and sensitivity for holographic applications. The highest practical doping level in LiNbO3: Mn has been found to be similar to0.5 wt.% MnCO3, and refractive-index changes and sensitivities up to 1.5 X 10(-3) and 1.3 cm/J are measured for extraordinarily polarized light of the wavelength 458 nm. It has been found that, in terms of both dynamic range (or refractive-index change) and sensitivity, the optimal oxidation state is highly oxidized. The distribution coefficient of Mn has been determined to be similar to1. Absorption measurements are used to obtain more information about charge-transport parameters. The material is excellently suited for holographic recording with blue light. The hologram quality is outstanding because holographic scattering is much weaker compared with that in, e.g., iron-doped lithium niobate. Thermal fixing has been successfully demonstrated in LiNbO3:Mn crystals. (C) 2003 Optical Society of America
- …