87 research outputs found

    Integrative Analyses Identify Potential Key Genes and Calcium-Signaling Pathway in Familial Atrioventricular Nodal Reentrant Tachycardia Using Whole-Exome Sequencing

    Get PDF
    BackgroundAtrioventricular nodal reentrant tachycardia (AVNRT) is a common arrhythmia. Growing evidence suggests that family aggregation and genetic factors are involved in AVNRT. However, in families with a history of AVNRT, disease-causing genes have not been reported.ObjectiveTo investigate the genetic contribution of familial AVNRT using a whole-exome sequencing (WES) approach.MethodsBlood samples were collected from 20 patients from nine families with a history of AVNRT and 100 control participants, and we systematically analyzed mutation profiles using WES. Gene-based burden analysis, integration of previous sporadic AVNRT data, pedigree-based co-segregation, protein-protein interaction network analysis, single-cell RNA sequencing, and confirmation of animal phenotype were performed.ResultsAmong 95 related reference genes, seven candidate pathogenic genes have been identified both in sporadic and familial AVNRT, including CASQ2, AGXT, ANK2, SYNE2, ZFHX3, GJD3, and SCN4A. Among the 37 reference genes from sporadic AVNRT, five candidate pathogenic genes were identified in patients with both familial and sporadic AVNRT: LAMC1, ryanodine receptor 2 (RYR2), COL4A3, NOS1, and ATP2C2. To identify the common pathogenic mechanisms in all AVNRT cases, five pathogenic genes were identified in patients with both familial and sporadic AVNRT: LAMC1, RYR2, COL4A3, NOS1, and ATP2C2. Considering the unique internal candidate pathogenic gene within pedigrees, three genes, TRDN, CASQ2, and WNK1, were likely to be the pathogenic genes in familial AVNRT. Notably, the core calcium-signaling pathway may be closely associated with the occurrence of AVNRT, including CASQ2, RYR2, TRDN, NOS1, ANK2, and ATP2C2.ConclusionOur pedigree-based studies demonstrate that RYR2 and related calcium signaling pathway play a critical role in the pathogenesis of familial AVNRT using the WES approach

    STABILITY ANALYSIS OF HIGH–ORDER HOPFIELD–TYPE NEURAL NETWORKS BASED ON A NEW IMPULSIVE DIFFERENTIAL INEQUALITY

    No full text
    This paper is devoted to studying the globally exponential stability of impulsive high-order Hopfield-type neural networks with time-varying delays. In the process of impulsive effect, nonlinear and delayed factors are simultaneously considered. A new impulsive differential inequality is derived based on the Lyapunov–Razumikhin method and some novel stability criteria are then given. These conditions, ensuring the global exponential stability, are simpler and less conservative than some of the previous results. Finally, two numerical examples are given to illustrate the advantages of the obtained results

    Evaluation of an adapted inhibitor-tolerant yeast strain for ethanol production from combined hydrolysate of softwood

    No full text
    In order to evaluate the potential of an adapted inhibitor-tolerant yeast strain developed in our lab to produce ethanol from softwood, the effect of furfural and HMF presented in defined medium and pretreatment hydrolysate on cell growth was investigated. And the efficiency of ethanol production from enzymatic hydrolysate mixed with pretreatment hydrolysate of softwood by bisulfite and sulfuric acid pretreatment process was reported. The results showed that in the combined treatments of the two inhibitors, cell growth was not affected at 1 g/L each of furfural and HMF. When 3 g/L each of furfural and HMF was applied, the adapted strain responded with an extended lag phase of 24 h. Both in batch and fed-batch runs of combined hydrolysate fermentation, the final ethanol concentrations were above 20.0 g/L and the ethanol yields (Yp/s) on the total amount of fermentable sugar presented in the pretreated materials were above 0.40 g/g. It implies the great promise of the yeast strain for improving ethanol production from softwood due to its high ability of metabolizing inhibitor compounds of furfural and HMF.Cellulosic ethanol Hydrolysate Saccharomyces cerevisiae Adaptation Softwood

    Analysis of Vibration of Roadheader Rotary Table Based on Finite Element Method and Data from Underground Coalmine

    No full text
    The intense vibration of a roadheader rotary table damages the cutting system of the roadheader and reduces the efficiency. This paper analyzes the vibration of a rotary table by combining the finite element model with tested data from an underground coalmine. First, the force of the rotary table during the cutting procedure was analyzed, and the finite element model was built using Pro/E and ADAMS. The tested data were then imported into the model after selection, procession, and combination were conducted. Next, the six lowest-order parameters of the rotary table were calculated. A vibration analysis of the rotary table under certain working conditions was conducted, and the results were compared with those from a modal experiment using a single-point excitation method. According to the comparison between the simulation result and experiments, it is clear that this method is both reasonable and feasible. And it could supplement the theoretical foundation of the analysis of other roadheader components, providing reference for the improvement of the structure and dynamic properties of a roadheader. In addition, other vibration components of a roadheader such as the cutting head and the cutting arm could also be analyzed through the proposed method, with very reliable precision

    Focusing on Detail: Deep Hashing Based on Multiple Region Details (Student Abstract)

    No full text
    Fast retrieval efficiency and high performance hashing, which aims to convert multimedia data into a set of short binary codes while preserving the similarity of the original data, has been widely studied in recent years. Majority of the existing deep supervised hashing methods only utilize the semantics of a whole image in learning hash codes, but ignore the local image details, which are important in hash learning. To fully utilize the detailed information, we propose a novel deep multi-region hashing (DMRH), which learns hash codes from local regions, and in which the final hash codes of the image are obtained by fusing the local hash codes corresponding to local regions. In addition, we propose a self-similarity loss term to address the imbalance problem (i.e., the number of dissimilar pairs is significantly more than that of the similar ones) of methods based on pairwise similarity

    On the Ecology and Conservation of Sericinus montelus (Lepidoptera: Papilionidae) - Its Threats in Xiaolongshan Forests Area (China).

    No full text
    Here we present a detailed analysis of the life history, mobility and habitat requirements of the butterfly Sericinus montelus on the basis of extensive field observations, experimental breeding, capture-mark- recapture (CMR) and transect surveys.We found that S. montelus has three generations per year and overwinters as pupae on shrub branches in Xiaolongshan. The adults of first generation have a peak of emergence in late April. The second generation emerges at the end of June and the third in early to middle August. Within the study region, larvae of S. montelus are monophagous on Aristolochia contorta. Adults fly slowly and lay eggs in clusters.Life tables show that natural enemies and human activities such as mowing, weeding and trampling during the egg and larval stages are key factors causing high mortality, killing up to 43% of eggs and 72% of larvae thereby limiting population growth and recovery.The populations of S. montelus in Xiaolongshan have a rather patchy distribution. According to CMR data, adults fly a maximum distance of 700m within a lifespan of 6 days. The host plant A. contorta, grows along the low banks of fields, irrigation ditches and paths, and can be highly affected by agricultural activities, like mowing, weeding and herding, which impact larval survival.For S. montelus should mainly focus on reducing agricultural threats to the host plant A. contorta and on increasing habitat connectivity

    Numerical Study of Influencing Factors of Safety and Stability of Tunnel Structure under Airport Runway

    No full text
    A six-degree-of-freedom mathematical model and mechanical balance equation of a “five-point-contact” aircraft are established in this study. The model and equation are used to investigate the safety and stability of a tunnel structure under the runway of an airport, particularly when aircraft taxi or move on the runway. ABAQUS is used to construct a three-dimensional finite element model of the cooperative deformation of the airport runway–soil–tunnel structure. The analysis focuses on the response and evolution of structural safety mechanical indices from the perspective of three influencing factors: type of aircraft, road surface, and burial depth. The results show that the distribution position of the main landing gear wheel is more concentrated using the dynamic load equation of different aircraft. A rigid pavement is not easily deformed when subjected to aircraft loads, whereas a flexible pavement has an excellent attenuation effect on diffusing forces. The shear stresses on the upper and lower arches of the tunnel structure differ depending on the pavement material. The deformation of the arches under shear stress is more intense than that of other parts. With an increase in burial depth, the tunnel structure withstanding the aircraft load disturbance exhibits an attenuation trend. The disturbance caused by soil stress to the tunnel structure must not be ignored. When the burial depth of the tunnel exceeds 64 m, the tunnel structure ceases to be disturbed by aircraft loads. The research results can significantly guide airport construction and be used as a reference for investigating the safety and stability of substructures under airport runways
    • 

    corecore