13 research outputs found

    Socializing One Health: an innovative strategy to investigate social and behavioral risks of emerging viral threats

    Get PDF
    In an effort to strengthen global capacity to prevent, detect, and control infectious diseases in animals and people, the United States Agency for International Development’s (USAID) Emerging Pandemic Threats (EPT) PREDICT project funded development of regional, national, and local One Health capacities for early disease detection, rapid response, disease control, and risk reduction. From the outset, the EPT approach was inclusive of social science research methods designed to understand the contexts and behaviors of communities living and working at human-animal-environment interfaces considered high-risk for virus emergence. Using qualitative and quantitative approaches, PREDICT behavioral research aimed to identify and assess a range of socio-cultural behaviors that could be influential in zoonotic disease emergence, amplification, and transmission. This broad approach to behavioral risk characterization enabled us to identify and characterize human activities that could be linked to the transmission dynamics of new and emerging viruses. This paper provides a discussion of implementation of a social science approach within a zoonotic surveillance framework. We conducted in-depth ethnographic interviews and focus groups to better understand the individual- and community-level knowledge, attitudes, and practices that potentially put participants at risk for zoonotic disease transmission from the animals they live and work with, across 6 interface domains. When we asked highly-exposed individuals (ie. bushmeat hunters, wildlife or guano farmers) about the risk they perceived in their occupational activities, most did not perceive it to be risky, whether because it was normalized by years (or generations) of doing such an activity, or due to lack of information about potential risks. Integrating the social sciences allows investigations of the specific human activities that are hypothesized to drive disease emergence, amplification, and transmission, in order to better substantiate behavioral disease drivers, along with the social dimensions of infection and transmission dynamics. Understanding these dynamics is critical to achieving health security--the protection from threats to health-- which requires investments in both collective and individual health security. Involving behavioral sciences into zoonotic disease surveillance allowed us to push toward fuller community integration and engagement and toward dialogue and implementation of recommendations for disease prevention and improved health security

    Metagenomic Analysis of Viruses from Bat Fecal Samples Reveals Many Novel Viruses in Insectivorous Bats in China

    No full text
    Increasing data indicate that bats harbor diverse viruses, some of which cause severe human diseases. In this study, sequence-independent amplification and high-throughput sequencing (Solexa) were applied to the metagenomic analysis of viruses in bat fecal samples collected from 6 locations in China. A total of 8,746,417 reads with a length of 306,124,595 bp were obtained. Among these reads, 13,541 (0.15%) had similarity to phage sequences and 9,170 (0.1%) had similarity to eukaryotic virus sequences. A total of 129 assembled contigs (\u3e100 nucleotides) were constructed and compared with GenBank: 32 contigs were related to phages, and 97 were related to eukaryotic viruses. The most frequent reads and contigs related to eukaryotic viruses were homologous to densoviruses, dicistroviruses, coronaviruses, parvoviruses, and tobamoviruses, a range that includes viruses from invertebrates, vertebrates, and plants. Most of the contigs had low identities to known viral genomic or protein sequences, suggesting that a large number of novel and genetically diverse insect viruses as well as putative mammalian viruses are transmitted by bats in China. This study provides the first preliminary understanding of the virome of some bat populations in China, which may guide the discovery and isolation of novel viruses in the future

    Clinical and Molecular Epidemiology of Hemorrhagic Fever with Renal Syndrome Caused by Orthohantaviruses in Xiangyun County, Dali Prefecture, Yunnan Province, China

    No full text
    Hemorrhagic fever with renal syndrome (HFRS) is a zoonotic disease transmitted by several rodent species. We obtained clinical data of HFRS patients from the medical records of the People’s Hospital of Xiangyun County in Dali Prefecture from July 2019 to August 2021. We collected epidemiological data of HFRS patients through interviews and investigated host animals using the night clip or night cage method. We systematically performed epidemiological analyses of patients and host animals. The differences in the presence of rodent activity at home (χ2 = 8.75, p = 0.031 2 = 9.19, p = 0.025 2 = 10.35, p = 0.014 Apodemus chevrieri, 100% (1/1) for the Rattus nitidus, 3.77% (2/53) for the Rattus norvegicus, and 12.50% (1/8) for the Crocidura dracula. In this study, a total of 21 strains of orthohantavirus were detected in patients and rodents. The 12 orthohantavirus strains from patients showed a closer relationship with Seoul orthohantavirus (SEOOV) L0199, DLR2, and GZRn60 strains; the six orthohantavirus strains from Rattus norvegicus and Apodemus chevrieri were closely related to SEOOV GZRn60 strain. One strain (XYRn163) from Rattus norvegicus and one strain (XYR.nitidus97) from Rattus nitidus were closely related to SEOOV DLR2 strain; the orthohantavirus strain from Crocidura dracula was closely related to the Luxi orthohantavirus (LUXV) LX309 strain. In conclusion, patients with HFRS in Xuangyun County of Dali Prefecture are predominantly affected by SEOOV, with multiple genotypes of orthohantavirus in host animals, and, most importantly, these orthohantavirus strains constantly demonstrated zoonotic risk in humans

    Prevalence of Wēnzhōu virus in small mammals in Yunnan Province, China.

    No full text
    BACKGROUND:Mammarenaviruses are associated with human hemorrhagic fever diseases in Africa and America. Recently, a rodent mammarenavirus, Wēnzhōu virus (WENV) and related viruses, have been reported in China, Cambodia, and Thailand. Moreover, in Cambodia, these viruses were suspected to be associated with human disease. In China, Yunnan Province is famous for its abundant animal and plant diversity and is adjacent to several South-eastern Asia countries. Therefore, it is necessary to know whether WENV-related viruses, or other mammarenaviruses, are prevalent in this province. METHODOLOGY/PRINCIPAL FINDINGS:Small mammals were trapped, euthanized, and sampled. Mammarenavirus RNA was detected using a nested reverse transcription polymerase chain reaction (RT-PCR) and quantified by real-time RT-PCR. A total of 1040 small mammals belonging to 13 genera and 26 species were trapped in Yunnan Province. WENV-related mammarenaviruses were detected in 41 rodent liver samples, mainly in brown rats (Rattus norvegicus) and oriental house rats (R. tanezumi).Viral nucleocapsid protein was detected in liver sections by indirect immunofluorescence assay. Full-length-genomes were amplified by RT-PCR and used for phylogenetic analysis with the MEGA package. Recombination analysis was performed using the SimPlot and Recombination Detection Program. CONCLUSIONS/SIGNIFICANCE:WENV related viruses circulated in small mammals in Yunnan Province. Whole genome sequence analysis of five selected viral strains showed that these viruses are closely related to WENVs discovered in Asia and form an independent branch in the phylogenetic tree in the WENV clade. Paying attention to investigate the influence of these viruses to public health is essential in the epidemic regions

    Characterization of a New Member of Alphacoronavirus with Unique Genomic Features in Rhinolophus Bats

    No full text
    Bats have been identified as a natural reservoir of a variety of coronaviruses (CoVs). Several of them have caused diseases in humans and domestic animals by interspecies transmission. Considering the diversity of bat coronaviruses, bat species and populations, we expect to discover more bat CoVs through virus surveillance. In this study, we described a new member of alphaCoV (BtCoV/Rh/YN2012) in bats with unique genome features. Unique accessory genes, ORF4a and ORF4b were found between the spike gene and the envelope gene, while ORF8 gene was found downstream of the nucleocapsid gene. All the putative genes were further confirmed by reverse-transcription analyses. One unique gene at the 3’ end of the BtCoV/Rh/YN2012 genome, ORF9, exhibits ~30% amino acid identity to ORF7a of the SARS-related coronavirus. Functional analysis showed ORF4a protein can activate IFN-β production, whereas ORF3a can regulate NF-κB production. We also screened the spike-mediated virus entry using the spike-pseudotyped retroviruses system, although failed to find any fully permissive cells. Our results expand the knowledge on the genetic diversity of bat coronaviruses. Continuous screening of bat viruses will help us further understand the important role played by bats in coronavirus evolution and transmission

    Structure of Mpro from COVID-19 virus and discovery of its inhibitors

    No full text
    A new coronavirus (CoV) identified as COVID-19 virus is the etiological agent responsible for the 2019-2020 viral pneumonia outbreak that commenced in Wuhan. Currently there are no targeted therapeutics and effective treatment options remain very limited. In order to rapidly discover lead compounds for clinical use, we initiated a program of combined structure-assisted drug design, virtual drug screening and high-throughput screening to identify new drug leads that target the COVID-19 virus main protease (M). M is a key CoV enzyme, which plays a pivotal role in mediating viral replication and transcription, making it an attractive drug target for this virus. Here, we identified a mechanism-based inhibitor, N3, by computer-aided drug design and subsequently determined the crystal structure of COVID-19 virus M in complex with this compound. Next, through a combination of structure-based virtual and high-throughput screening, we assayed over 10,000 compounds including approved drugs, drug candidates in clinical trials, and other pharmacologically active compounds as inhibitors of M. Six of these compounds inhibited M with IC values ranging from 0.67 to 21.4 μM. Ebselen also exhibited promising antiviral activity in cell-based assays. Our results demonstrate the efficacy of this screening strategy, which can lead to the rapid discovery of drug leads with clinical potential in response to new infectious diseases for which no specific drugs or vaccines are available
    corecore