2,386 research outputs found

    Simultaneous observation of small- and large-energy-transfer electron-electron scattering in three dimensional indium oxide thick films

    Full text link
    In three dimensional (3D) disordered metals, the electron-phonon (\emph{e}-ph) scattering is the sole significant inelastic process. Thus the theoretical predication concerning the electron-electron (\emph{e}-\emph{e}) scattering rate 1/τφ1/\tau_\varphi as a function of temperature TT in 3D disordered metal has not been fully tested thus far, though it was proposed 40 years ago [A. Schmid, Z. Phys. \textbf{271}, 251 (1974)]. We report here the simultaneous observation of small- and large-energy-transfer \emph{e}-\emph{e} scattering in 3D indium oxide thick films. In temperature region of T100T\gtrsim100\,K, the temperature dependence of resistivities curves of the films obey Bloch-Gr\"{u}neisen law, indicating the films possess degenerate semiconductor characteristics in electrical transport property. In the low temperature regime, 1/τφ1/\tau_\varphi as a function of TT for each film can not be ascribed to \emph{e}-ph scattering. To quantitatively describe the temperature behavior of 1/τφ1/\tau_\varphi, both the 3D small- and large-energy-transfer \emph{e}-\emph{e} scattering processes should be considered (The small- and large-energy-transfer \emph{e}-\emph{e} scattering rates are proportional to T3/2T^{3/2} and T2T^2, respectively). In addition, the experimental prefactors of T3/2T^{3/2} and T2T^{2} are proportional to kF5/23/2k_F^{-5/2}\ell^{-3/2} and EF1E_F^{-1} (kFk_F is the Fermi wave number, \ell is the electron elastic mean free path, and EFE_F is the Fermi energy), respectively, which are completely consistent with the theoretical predications. Our experimental results fully demonstrate the validity of theoretical predications concerning both small- and large-energy-transfer \emph{e}-\emph{e} scattering rates.Comment: 5 pages and 4 figure

    Diagnostic analysis of dynamic deflection for cracked asphalt pavements under FWD impulsive loading

    Get PDF
    The falling weight deflectometer (FWD) is a non-destructive testing technology used to calculate the stiffness-related parameters of pavement structures and has been widely used in the pavement engineering field. Deflection basin testing data have an obviously affecting effect on the modulus backcalculation of an asphalt pavement. Identifying effective data of dynamic deflection basins is an important task to perform modulus backcalculation. The objective of this paper is to study the distribution features of dynamic deflection basins of cracked asphalt pavements using a three dimension dynamic finite element method. Based on the systematic analysis, the criteria used to filter effective data of FWD deflection basins were presented and verified with an in-situ case study. The study results demonstrated that the crack width of 0.2 mm was a critical value to determine the existence of contact behavior between vertical crack surfaces. The distribution characteristics of dynamic deflection basins showed a significant difference between intact and cracked pavements. The established criteria, involving surface deflection indicator and surface modulus indicator, were verified to be reasonable and viable for filtering the FWD testing data

    Remote information concentration and multipartite entanglement in multilevel systems

    Full text link
    Remote information concentration (RIC) in dd-level systems (qudits) is studied. It is shown that the quantum information initially distributed in three spatially separated qudits can be remotely and deterministically concentrated to a single qudit via an entangled channel without performing any global operations. The entangled channel can be different types of genuine multipartite pure entangled states which are inequivalent under local operations and classical communication. The entangled channel can also be a mixed entangled state, even a bound entangled state which has a similar form to the Smolin state, but has different features from the Smolin state. A common feature of all these pure and mixed entangled states is found, i.e., they have d2d^2 common commuting stabilizers. The differences of qudit-RIC and qubit-RIC (d=2d=2) are also analyzed.Comment: 10 pages, 3 figure

    Quality-Aware Network for Face Parsing

    Full text link
    This is a very short technical report, which introduces the solution of the Team BUPT-CASIA for Short-video Face Parsing Track of The 3rd Person in Context (PIC) Workshop and Challenge at CVPR 2021. Face parsing has recently attracted increasing interest due to its numerous application potentials. Generally speaking, it has a lot in common with human parsing, such as task setting, data characteristics, number of categories and so on. Therefore, this work applies state-of-the-art human parsing method to face parsing task to explore the similarities and differences between them. Our submission achieves 86.84% score and wins the 2nd place in the challenge.Comment: 2nd place in Short-video Face Parsing Track of The 3rd Person in Context (PIC) Workshop and Challenge at CVPR 202

    Chloroquinone Inhibits Cell Proliferation and Induces Apoptosis in Nasopharyngeal Carcinoma Cell Lines

    Get PDF
    Purpose: To demonstrate the role of chloroquinone (CQ) in inducing apoptosis in HONE-1 and HNE-1, nasopharyngeal carcinoma (NPC) cell lines.Methods: Water-soluble tetrazolium salt (WST)-1 assay was used for the determination of cell proliferation while an inverted microscope was employed for the analysis of alterations in the morphology of the cells.Results: CQ treatment led to a significant reduction in the rate of cell proliferation in NPC cells after 48 h. In HONE-1 and HNE-1 cell lines viability was reduced to 89 and 82 %, respectively on treatment with 10 μΜ concentration of CQ without affecting normal human skin keratinocyte cell line, K38. The expression of Ki67, a marker for proliferation as well as proliferating cell nuclear antigen (PCNA), decreased in the CQ-treated NPC cells. Morphological examination of NPC cells revealed cell apoptosis on treatment with CQ after 48 h. Treatment of NPC cells with CQ induced activation of caspases and DNA was damaged which further confirmed CQ mediated induction of apoptosis. The level of apoptotic cells in CQ treated and untreated control HONE-1 cell cultures was 53.67 and 3.78 %, respectively (p < 0.05). In addition, CQ treatment decreased reactive oxygen species (ROS) generation in NPC cells.Conclusion: CQ inhibits cell proliferation of NPC cells by inducing apoptosis via DNA damage, and may be of therapeutic use for the treatment of NPC. However, this requires clinical investigation to ascertain its therapeutic potential.Keywords: Chloroquinone, Caspases, Apoptosis, Nuclear antigen, Nasopharyngeal carcinom

    Optimal Disturbances Rejection Control for Autonomous Underwater Vehicles in Shallow Water Environment

    Get PDF
    To deal with the disturbances of wave and current in the heading control of Autonomous Underwater Vehicles (AUVs), an optimal disturbances rejection control (ODRC) approach for AUVs in shallow water environment is designed to realize this application. Based on the quadratic optimal control theory, the AUVs heading control problem can be expressed as a coupled two-point boundary value (TPBV) problem. Using a recently developed successive approximation approach, the coupled TPBV problem is transformed into solving a decoupled linear state equation sequence and a linear adjoint equation sequence. By iteratively solving the two equation sequences, the approximate ODRC law is obtained. A Luenberger observer is constructed to estimate wave disturbances. Simulation is provided to demonstrate the effectiveness of the presented approach

    Causality and stability analysis for the minimal causal spin hydrodynamics

    Full text link
    We perform the linear analysis of causality and stability for a minimal extended spin hydrodynamics up to second order of the gradient expansion. The first order spin hydrodynamics, with a rank-3 spin tensor being antisymmetric for only the last two indices, are proved to be acausal and unstable. We then consider the minimal causal spin hydrodynamics up to second order of the gradient expansion. We derive the necessary causality and stability conditions for this minimal causal spin hydrodynamics. Interestingly, the satisfaction of the stability conditions relies on the equations of state for the spin density and chemical potentials. Moreover, different with the conventional relativistic dissipative hydrodynamics, the stability of the theory seems to be broken at the finite wave-vector when the stability conditions are fulfilled at small and large wave-vector limits. It implies that the behavior in small and large wave-vector limits may be insufficient to determine the stability conditions for spin hydrodynamics in linear mode analysis.Comment: 45 pages, 2 figures, typos corrected, published versio

    Research and Application on Spark Clustering Algorithm in Campus Big Data Analysis

    Get PDF
    Big data analysis has penetrated into all fields of society and has brought about profound changes. However, there is relatively little research on big data supporting student management regarding college and university’s big data. Taking the student card information as the research sample, using spark big data mining technology and K-Means clustering algorithm, taking scholarship evaluation as an example, the big data is analyzed. Data includes analysis of students’ daily behavior from multiple dimensions, and it can prevent the unreasonable scholarship evaluation caused by unfair factors such as plagiarism, votes of teachers and students, etc. At the same time, students’ absenteeism, physical health and psychological status in advance can be predicted, which makes student management work more active, accurate and effective
    corecore