918 research outputs found

    Could Fractional Exhaled Nitric Oxide Test be Useful in Predicting Inhaled Corticosteroid Responsiveness in Chronic Cough? A Systematic Review

    Get PDF
    © 2016 Background Fractional exhaled nitric oxide (FENO) is a safe and convenient test for assessing T H 2 airway inflammation, which is potentially useful in the management of patients with chronic cough. Objective To summarize the current evidence on the diagnostic usefulness of FENO for predicting inhaled corticosteroid (ICS) responsiveness in patients with chronic cough. Methods A systematic literature review was conducted to identify articles published in peer-reviewed journals up to February 2015, without language restriction. We included studies that reported the usefulness of FENO (index test) for predicting ICS responsiveness (reference standard) in patients with chronic cough (target condition). The data were extracted to construct a 2 × 2 accuracy table. Study quality was assessed with Quality Assessment of Diagnostic Accuracy Studies 2. Results We identified 5 original studies (2 prospective and 3 retrospective studies). We identified considerable heterogeneities in study design and outcome definitions, and thus were unable to perform a meta-analysis. The proportion of ICS responders ranged from 44% to 59%. Sensitivity and specificity ranged from 53% to 90%, and from 63% to 97%, respectively. The reported area under the curve ranged from abou t 0.60 to 0.87; however, studies with a prospective design and a lower prevalence of asthma had lower area under the curve values. None measured placebo effects or objective cough frequency. Conclusions We did not find strong evidence to support the use of FENO tests for predicting ICS responsiveness in chronic cough. Further studies need to have a randomized, placebo-controlled design, and should use validated measurement tools for cough. Standardization would facilitate the development of clinical evidence

    Nanoscale Si coating on the pore walls of SnO2 nanotube anode for Li rechargeable batteries

    Get PDF
    A nanoscale coating of a Si layer on the pore walls of SnO2 nanotubes (Si-coated SnO2) leads to very good electrochemical performance in coulombic efficiency, rate capability and capacity retention compared with untreated SnO2 nanotubes.close514

    Comparison between Anterior Corneal Aberration and Ocular Aberration in Laser Refractive Surgery

    Get PDF
    Purpose: To compare changes of anterior corneal aberration (Pentacam®) and ocular aberration (aberrometer, LADARWave®) after laser refractive surgery. Methods: Sixty-six eyes underwent laser refractive surgery and were retrospectively reviewed. Anterior corneal aberration and ocular aberration were measured by Pentacam ® and an aberrometer (LADARWave®) respectively. Changes of root mean square (RMS) values of coma, spherical aberration, and total high order aberration (HOA) were evaluated before, 1 month, and 3 months after surgery Results: Ocular aberrations displayed low preoperative values, but after laser refractive surgery, anterior corneal aberration and ocular aberration increased equally. There were no statistically significant differences of internal optics aberration values (ocular aberration minus anterior corneal aberration) in coma, spherical aberration, and total HOA. Anterior corneal aberration and ocular aberration showed statistically significant correlations at 1 and 3 months after surgery. Conclusions: Internal optics aberration compensated the anterior corneal aberration effectively before surgery, but the increase of anterior corneal aberration after laser refractive surgery exceeded the compensation of internal optics. As a result, anterior corneal aberration and ocular aberration increased equally. The correlation between anterior corneal aberration and ocular aberration after surgery was statistically significant due to the increased proportion of anterior corneal aberration in ocular aberration. Korean J Ophthalmol 2008;22:164-168 ⓒ 2008 by the Korean Ophthalmological Society

    Junctional membrane inositol 1,4,5-trisphosphate receptor complex coordinates sensitization of the silent EGF-induced Ca2+ signaling

    Get PDF
    Ca2+ is a highly versatile intracellular signal that regulates many different cellular processes, and cells have developed mechanisms to have exquisite control over Ca2+ signaling. Epidermal growth factor (EGF), which fails to mobilize intracellular Ca2+ when administrated alone, becomes capable of evoking [Ca2+]i increase and exocytosis after bradykinin (BK) stimulation in chromaffin cells. Here, we provide evidence that this sensitization process is coordinated by a macromolecular signaling complex comprised of inositol 1,4,5-trisphosphate receptor type I (IP3R1), cAMP-dependent protein kinase (PKA), EGF receptor (EGFR), and an A-kinase anchoring protein, yotiao. The IP3R complex functions as a focal point to promote Ca2+ release in two ways: (1) it facilitates PKA-dependent phosphorylation of IP3R1 in response to BK-induced elevation of cAMP, and (2) it couples the plasmalemmal EGFR with IP3R1 at the Ca2+ store located juxtaposed to the plasma membrane. Our study illustrates how the junctional membrane IP3R complex connects different signaling pathways to define the fidelity and specificity of Ca2+ signaling

    Isolated Epidermolytic Acanthoma in a Renal Transplant Recipient

    Get PDF

    Development and Validation of an Arterial Pressure-Based Cardiac Output Algorithm Using a Convolutional Neural Network: Retrospective Study Based on Prospective Registry Data

    Get PDF
    Background: Arterial pressure-based cardiac output (APCO) is a less invasive method for estimating cardiac output without concerns about complications from the pulmonary artery catheter (PAC). However, inaccuracies of currently available APCO devices have been reported. Improvements to the algorithm by researchers are impossible, as only a subset of the algorithm has been released. Objective: In this study, an open-source algorithm was developed and validated using a convolutional neural network and a transfer learning technique. Methods: A retrospective study was performed using data from a prospective cohort registry of intraoperative bio-signal data from a university hospital. The convolutional neural network model was trained using the arterial pressure waveform as input and the stroke volume (SV) value as the output. The model parameters were pretrained using the SV values from a commercial APCO device (Vigileo or EV1000 with the FloTrac algorithm) and adjusted with a transfer learning technique using SV values from the PAC. The performance of the model was evaluated using absolute error for the PAC on the testing dataset from separate periods. Finally, we compared the performance of the deep learning model and the FloTrac with the SV values from the PAC. Results: A total of 2057 surgical cases (1958 training and 99 testing cases) were used in the registry. In the deep learning model, the absolute errors of SV were 14.5 (SD 13.4) mL (10.2 [SD 8.4] mL in cardiac surgery and 17.4 [SD 15.3] mL in liver transplantation). Compared with FloTrac, the absolute errors of the deep learning model were significantly smaller (16.5 [SD 15.4] and 18.3 [SD 15.1], P<.001). Conclusions: The deep learning-based APCO algorithm showed better performance than the commercial APCO device. Further improvement of the algorithm developed in this study may be helpful for estimating cardiac output accurately in clinical practice and optimizing high-risk patient care. © Hyun-Lim Yang, Chul-Woo Jung, Seong Mi Yang, Min-Soo Kim, Sungho Shim, Kook Hyun Lee, Hyung-Chul Lee. Originally published in JMIR Medical Informatics (https://medinform.jmir.org), 16.08.2021. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Medical Informatics, is properly cited. The complete bibliographic information, a link to the original publication on https://medinform.jmir.org/, as well as this copyright and license information must be included.1

    Modeling of endothelial cell dysfunction using human induced pluripotent stem cells derived from patients with end-stage renal disease

    Get PDF
    Background Endothelial cell (EC) dysfunction is a frequent feature in patients with end-stage renal disease (ESRD). The aim of this study was to generate human induced pluripotent stem cells, differentiate ECs (hiPSC-ECs) from patients with ESRD, and appraise the usefulness of hiPSC-ECs as a model to investigate EC dysfunction. Methods We generated hiPSCs using peripheral blood mononuclear cells (PBMCs) isolated from three patients with ESRD and three healthy controls (HCs). Next, we differentiated hiPSC-ECs using the generated hiPSCs and assessed the expression of endothelial markers by immunofluorescence. The differentiation efficacy, EC dysfunction, and molecular signatures of EC-related genes based on microarray analysis were compared between the ESRD and HC groups. Results In both groups, hiPSCs and hiPSC-ECs were successfully obtained based on induced pluripotent stem cell or EC marker expression in immunofluorescence and flow cytometry. However, the efficiency of differentiation of ECs from hiPSCs was lower in the ESRD-hiPSCs than in the HC-hiPSCs. In addition, unlike HC-hiPSC-ECs, ESRD-hiPSC-ECs failed to form interconnecting branching point networks in an in vitro tube formation assay. During microarray analysis, transcripts associated with oxidative stress and inflammation were upregulated and transcripts associated with vascular development and basement membrane extracellular matrix components were downregulated in ESRD-hiPSC-ECs relative to in HC-hiPSC-ECs. Conclusion ESRD-hiPSC-ECs showed a greater level of EC dysfunction than HC-hiPSC-ECs did based on functional assay results and molecular profiles. hiPSC-ECs may be used as a disease model to investigate the pathophysiology of EC dysfunction in ESRD

    The Effects of Acupuncture Stimulation for Brain Activation and Alcohol Abstinence Self-Efficacy: Functional MRI Study

    Get PDF
    We attempted to investigate whether acupuncture stimulation at HT7 can have an effect on brain activation patterns and alcohol abstinence self-efficacy. Thirty-four right-handed healthy subjects were recruited for this study. They were randomly assigned into two groups: the HT7 (Shenmen) group and the LI5 (Yangxi) group. Acupuncture stimulation was performed using a block paradigm during fMRI scanning. Additionally, the Korean version of Alcohol Abstinence Self-Efficacy Scale (AASES) was used to determine the effect of acupuncture stimulation on self-efficacy to abstain from alcohol use. According to the result of fMRI group analysis, the activation induced by HT7 stimulation was found on the bilateral postcentral gyrus, inferior parietal lobule, inferior frontal gyrus, claustrum, insula, and anterior lobe of the cerebellum, as well as on the left posterior lobe of the cerebellum (p<0.001, uncorrected). According to the AASES analysis, the interaction effect for gender and treatment was marginally significant (F(1,30)=4.152, p=0.050). For female group, the simple main effect of treatment was significant (F(1,11)=8.040, p=0.016), indicating that the mean change score was higher in the HT7 stimulation than in the LI5 stimulation. Therefore, our study has provided evidence to support that HT7 stimulation has a positive therapeutic effect on the alcohol-related diseases
    corecore