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Abstract

Background: Arterial pressure-based cardiac output (APCO) is a less invasive method for estimating cardiac output without
concerns about complications from the pulmonary artery catheter (PAC). However, inaccuracies of currently available APCO
devices have been reported. Improvements to the algorithm by researchers are impossible, as only a subset of the algorithm has
been released.

Objective: In this study, an open-source algorithm was developed and validated using a convolutional neural network and a
transfer learning technique.

Methods: A retrospective study was performed using data from a prospective cohort registry of intraoperative bio-signal data
from a university hospital. The convolutional neural network model was trained using the arterial pressure waveform as input
and the stroke volume (SV) value as the output. The model parameters were pretrained using the SV values from a commercial
APCO device (Vigileo or EV1000 with the FloTrac algorithm) and adjusted with a transfer learning technique using SV values
from the PAC. The performance of the model was evaluated using absolute error for the PAC on the testing dataset from separate
periods. Finally, we compared the performance of the deep learning model and the FloTrac with the SV values from the PAC.

Results: A total of 2057 surgical cases (1958 training and 99 testing cases) were used in the registry. In the deep learning model,
the absolute errors of SV were 14.5 (SD 13.4) mL (10.2 [SD 8.4] mL in cardiac surgery and 17.4 [SD 15.3] mL in liver
transplantation). Compared with FloTrac, the absolute errors of the deep learning model were significantly smaller (16.5 [SD
15.4] and 18.3 [SD 15.1], P<.001).

Conclusions: The deep learning–based APCO algorithm showed better performance than the commercial APCO device. Further
improvement of the algorithm developed in this study may be helpful for estimating cardiac output accurately in clinical practice
and optimizing high-risk patient care.

(JMIR Med Inform 2021;9(8):e24762) doi: 10.2196/24762
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Introduction

Cardiac output (CO; L/min), the amount of blood pumped from
the left ventricle per minute, is the main determinant of oxygen
delivery to the body, including to the brain and vital organs,
and is an important monitoring parameter during hemodynamic
optimization. It is sometimes referred to as the stroke volume
(SV; mL/beat), calculated by dividing the CO by the heart rate
(HR; beats per minute). Particularly, in the perioperative phase,
hemodynamic optimization is directly related to postoperative
complications, which are the third leading cause of death
worldwide [1]. Patients’ outcomes can potentially be improved
by applying immediate treatment to maintain CO within 4-8
L/min or maintain SV within 60-100 mL/beat during major
surgery [2]. Optimization of CO is also essential for high-risk
patients [3]. Early interventions for hemodynamic control can
significantly reduce mortality by more than 20% in high-risk
patients [4].

The thermodilution method using a pulmonary artery catheter
(PAC) has been regarded as a gold standard for measuring CO
in clinical practice [5]. However, owing to its invasiveness, the
risks associated with placement limit its use to only cardiac
surgery, liver transplantations, and some critically ill patients.
Instead, arterial pressure-based cardiac output (APCO) methods
have been proposed as a less invasive method for estimating
CO from the arterial pressure waveform without the risk of
complications associated with a PAC [6,7]. These methods
estimate systemic vascular resistance from arterial pressure
waveform and general patient characteristics and predict the
SV. As the arterial line is less invasive and usually inserted for
continuous blood pressure monitoring, APCO devices such as
the FloTrac (Edwards Lifesciences, Irvine, CA, United States)
or LiDCO Rapid (LiDCO Ltd, London, UK) are widely used
in perioperative CO management. However, inaccuracies of the
commercially available APCO devices have been reported,
especially, in sepsis or liver transplantation patients [8,9].
Improvements of the algorithm by researchers are also not
possible, because only a subset of the algorithm has been openly
released.

Recent advances in machine learning techniques have led to
many new approaches to solving clinical problems [10]. Deep
learning techniques, such as convolutional neural networks
(CNNs), have performed well in bio-signal analysis [11]. In
contrast, the shortage of clinical bio-signal data makes it difficult
to train deep learning models properly [12,13]. Publicly
available bio-signal datasets are still limited compared with
medical imaging or structured datasets [14-16]. Furthermore,
data with reduced clinical use, such as PAC-based CO, worsen
this tendency. In this case, after training a model with a
relatively common dataset, a transfer learning technique can be
used to refine the model parameters with relatively rare data.
Previous studies also reported performance gains from transfer
learning with bio-signal data [17-20].

In this study, a novel APCO algorithm was built using a transfer
learning technique. The algorithm learned the commercial
APCO algorithm and then was trained with less-common PAC
data. In addition, several preprocessing techniques were
proposed to analyze the arterial pressure waveforms for
predicting CO. Finally, the deep learning model was validated
using real-world bio-signal data, which was collected during a
separate period than the training data and includes cardiac
surgery and liver transplantation patients. This study
hypothesized that a model developed using real-world clinical
data, deep learning techniques, and transfer learning techniques
can be more accurate than a commercial APCO device for
estimating CO.

Methods

Study Approval
All data used in this study were obtained from the prospective
registry of the vital signs for surgical patients at Seoul National
University Hospital. The registry was approved by the
Institutional Review Board of Seoul National University
Hospital (H-1408-101-605) and registered at the clinical trial
registration site (ClinicalTrials.gov, NCT02914444). This
retrospective study was also approved by the Institutional
Review Board (H-2007-015-1138). However, the need for
written informed consent was waived because of the anonymity
of the data.

Data Collection
The registry collected synchronous vital signs and bio-signal
data from various medical devices using the Vital Recorder
Program [21]. Among the cases in the registry, those from
between August 2016 and September 2019 were used in this
study. The cases collected in the last 8 months of the study
period (February 2019 to September 2019) were used for the
testing dataset. The remaining cases were used for training the
model.

During data collection, CO monitors were used according to
the discretion of the anesthesiologist. CO values were collected
at 2-second intervals from the serial port of APCO devices, such
as the EV1000 clinical platform or the Vigileo system (Edwards
Lifesciences, Irvine, CA, United States) with a fourth-generation
FloTrac algorithm or a PAC-based device such as the Vigilance
II (Edwards Lifesciences, Irvine, CA, United States). The arterial
pressure waveform was recorded at 500 Hz from the analog
output port of the TRAM module (GE Healthcare, Chicago, IL,
United States), and the heart rate was recorded at 2-second
intervals from the serial port of the Solar 8000 patient monitor
(GE Healthcare, Chicago, IL, United States). General patient
characteristics (ie, age, sex, weight, and height) were collected
from electronic medical records.

The deep learning model requires massive amounts of data for
good performance. However, with PAC-based CO monitoring
data, such as the Vigilance II, it is difficult to retain massive
amounts of data, which hinders the ability to develop of a good
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deep learning model using real-world databases. Hence, the
model was pretrained using APCO data from the EV1000 or
Vigileo, from which data are relatively easy to obtain. After
that, we tuned the model using PAC data from the Vigilance II,
from which data are hard to obtain. In total, 1572 cases of
surgery were recorded with APCO monitoring devices for
pretraining, 290 cases were recorded with PAC-based CO
monitoring devices for tuning or testing, and 195 cases were
recorded with both APCO and PAC-based CO monitoring
devices for tuning or testing. Among the 2057 cases, 1958 cases
(95.19%) that were operated on from August 2016 to January
2019 were used for pretraining or tuning, and the remaining 99
cases (4.81%) that were operated on since February 2019 were
used for testing.

Data Preprocessing
A dataset of arterial pressure waveforms was preprocessed,
including corresponding SV values. The arterial pressure
waveforms were resampled from 500 Hz to 100 Hz and sliced
into 20-second segments. Each pair of a 20-second segment and
an SV was referred to as a “sample.” For preprocessing the
samples, the following 4 steps were performed: (1) converting
the output of PAC-based CO data to SV, (2) smoothing the
APCO data, (3) delaying the PAC data, and (4) removing
unsuitable samples.

The APCO monitoring device provides the SV value, because
it estimates the amount of blood moving from arterial waves
when a stroke occurs. In contrast, a PAC-based CO monitoring
device emits the CO value, because it measures the temperature
change by blood flow from the pulmonary artery catheter.
Owing to the physiological differences between the 2 methods,
CO values needed to be converted from the Vigilance II monitor
to SV, using HR values (SV = CO/HR), to synchronize with
APCO data.

In addition, because there were larger fluctuations in the APCO
data than clinically expected CO changes, the APCO data were
smoothed using a locally weighted scatterplot smoother
(LOWESS) algorithm [22]. We used the hyperparameter,
λ=0.03, of the LOWESS algorithm. If APCO data were not

recorded for more than 200 seconds in a single case due to
recording errors, the LOWESS algorithm was applied separately.

In addition, the PAC-based SV value was delayed, to
synchronize the time differences between arterial pressure
waveforms and PAC data. There are several minutes of delay
in the CO values using the Vigilance II in its “Trend” mode
[23,24]. To determine the time lag of the CO values in the Trend
modes, we used the device with the “STAT” mode in several
cases, allowing both the CO values and the “CO stat” values to
be transferred. Then, the CO values were compared with the
CO stat values, and we obtained the minimum mean absolute
difference with the delay of 2 minutes. Thus, PAC-based SV
values were shifted to the time 2 minutes earlier than the
recorded time. More detailed descriptions and examples of
delaying PAC values are provided in Multimedia Appendix 1.

Finally, unsuitable samples were removed for robust deep
learning model training. Samples with a blood pressure <25
mmHg or >250 mmHg and an SV <20 mL or >200 mL were
removed from the dataset. After applying a beat-detection
algorithm, we eliminated samples with an HR <30 beats/min
or >180 beats/min, a pulse pressure <20 mm Hg, or with
frequent (>50%) ventricular premature beats [25].

Model Building
A CNN model was designed to learn the appropriate feature
extraction from the 20-second segments of arterial pressure
waveforms. The goal of the model was to estimate PAC-based
CO values using the arterial pressure waveform and the patient’s
demographics (ie, age, sex, weight, and height) (Figure 1). The
model consists of 2 parts: feature extraction and regression. The
feature extraction part of the model was composed of 2
successive pairs of convolution and batch-normalization layers,
15 inception modules, 2 nonlocal modules with pooling, and
dropout layers [26-29]. The regression part of the model, which
was composed of 3 fully connected, batch-normalization, and
dropout layers, takes a concatenation of the extracted features
from the feature extraction part and the patient’s demographic
information as input and returns a predicted SV value. For all
layers, a rectified linear unit was used as the activation function.
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Figure 1. Proposed convolutional neural network model for estimating stroke volume from arterial pressure waveform. (A) Overall model architecture.
(B) Details of the inception module. (C) Details of the nonlocal module. The variable k indicates kernel size of the convolution layer, d means the
dilation rate of the convolution layer, and p represents pooling rate. GlobalAvgPool indicates the global average pooling layer, which computes the
mean value for each feature map and supplies abstracted feature maps to the flattening layer. Dotted arrows represent dropout of 0.5, while solid arrows
mean full connections. BS: batch size; FC: fully connected.

Input samples were abstracted by 2 consecutive pairs of
convolution and batch-normalization layers (dropout rate of
0.5), before feeding them into the inception modules. The
inception modules consisted of 4 paths with 6 convolution layers
and 1 pooling layer. The filter size of each path in the inception
module was 32, and the outputs of the 4 paths were concatenated

to 128. The detailed configurations of the inception module are
illustrated in Figure 1B. Note that p represents the pooling rate
of the average pooling layer, k indicates the kernel size of the
convolution layer, and d is the dilation rate of the dilated
convolution layer. After an odd-numbered inception module,
an average pooling layer intervened to reduce the size of feature

JMIR Med Inform 2021 | vol. 9 | iss. 8 | e24762 | p. 4https://medinform.jmir.org/2021/8/e24762
(page number not for citation purposes)

Yang et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


maps from the previous inception module. The shaded inception
module block in Figure 1A was repeated 6 times. Nonlocal
modules were added just before the last 2 inception modules to
consider the global covariance in each segment. The first fully
connected layer was a flattening layer (size of 132) that took
the concatenation of the average of feature maps by global
average pooling (size of 128) and demographic information
(size of 4). The number of neurons in the last 2 fully connected
layers was 64 and 1, respectively. Immediately after the second
fully connected layers, there was a batch-normalization layer
to achieve robustness for cases in which a batch is biased to a
specific SV range. The last fully connected layer consisted of
a single neuron, which represents a float value of the SV. For
all fully connected layers, a dropout of 0.5 was used. The output
dimensions of each module or layer are described in Figure 1.
Note that dimensions are represented as BS, channel, and length,
where BS indicates batch size. The dotted arrows indicate a
dropout of 0.5.

Model Training
Our model was trained using a transfer learning method with 2
steps: pretraining and tuning. During pretraining, SV values
were used from EV1000 or Vigileo to find rough parameters of
the model for analyzing arterial pressure waveforms. The input
of pretraining was 20-second segments of arterial pressure
waveform and patient demographic information, and the output
was the predicted SV. After that, the parameters were tuned
using PAC data. The input and output of tuning were the same
as in pretraining; however, the parameters of the regressor part
were initialized with the Xavier algorithm to be retrained with
PAC data [30]. Gradient-descent optimizers, RAdam, and
Lookahead were used to update parameters [31,32]. The batch
size was 512, and the loss function was the root mean squared
error. Note that the loss function was calculated based on the
equation (Ŷ = predicted value; Y = ground truth; N = batch
size):

Root mean squared error = (∑N(Ŷ-Y)2/N)1/2 (1)

The model was tested every 200 steps using 30% of the training
datasets to calculate the validation errors. The training was
stopped when the validation errors no longer decreased after 50
times and then was restarted with a smaller learning rate (decay
rate of 0.5). The training was performed using our own program
(code available at [33]), written in Python using PyTorch 1.1.0
on a graphics processing unit server with two 10-core Intel Xeon
central processing units and eight Nvidia GTX 1080Ti graphics
processing units.

Statistical Analysis
The statistics of patient demographics were described in the
training and testing groups, comparing the heterogeneity of the
variables. Note that training groups contained pretraining and
tuning datasets, and the testing group contained the testing
dataset. For continuous variables (ie, age, height, and weight),
a Mann-Whitney U test was performed for comparisons after
testing for normality using a Shapiro-Wilk test. For categorical
variables (ie, sex), a Pearson chi-square test was conducted for
comparisons between groups.

The performance of the deep learning model was validated using
error, absolute error, percentage error, and absolute percentage
error, using the testing dataset. Each metric was calculated based
on the equation (Ŷ = predicted value; Y = PAC value; N =
number of samples):

Error (mL) = ∑N (Ŷ-Y)/N (2)

Absolute error (mL) = ∑N |Ŷ-Y|/N (3)

Percentage error (%) = [∑N {(Ŷ-Y)/Y}/N] × 100 (4)

Absolute percentage error (%) = {∑N |(Ŷ-Y)/Y|/N} ×
100 (5)

Efforts were made to validate the generalizability and
substitutability of our model by comparing its performance with
the FloTrac in two radically different patient groups: the patients
who underwent cardiac surgery and the patients who underwent
liver transplantation surgery. Among the test dataset, both the
FloTrac and Vigilance II devices were used simultaneously in
16 cases of cardiac surgery and 40 cases of liver transplantation
surgery. With these 56 cases, direct comparisons were performed
between the deep learning model and FloTrac using a paired t
test for overall cases and each subgroup.

Spearman correlation coefficients were calculated between the
SV of the deep learning model and PAC, and between the SV
of the EV1000 or Vigileo and PAC. Bland-Altman analysis was
used to test the agreement of either the pair of the deep learning
model and PAC-based SV or the pair of the FloTrac and
PAC-based SV [34]. Bias was defined as the mean difference
between SVs, and the upper and lower limits of agreement were
defined as ±1.96 SDs of the bias. The trending ability of the
deep learning model was examined using a 4-quadrant plot
analysis [35]. The concordance rate of the association for
percentage changes in SV was calculated between our model
or the FloTrac and PAC, with the exclusion of 10% of the
changes [36].

All data are expressed as the mean (SD), median (interquartile
range), or absolute numbers (%). P values <.05 were considered
statistically significant. Statistical analyses were performed
using Python Scipy 1.4.1.

Results

Data from 2057 surgical cases (1232 general, 59.89%; 636
thoracic, 30.92%; 159 urologic, 7.73%; 23 gynecologic, 1.12%;
6 otolaryngologic, 0.29%; and 1 plastic surgery, 0.05%) in the
registry were extracted and preprocessed. Of these 2057 surgical
cases, we used the data from 1958 cases (95.19%) for training
and 99 cases (4.81%; 59 cardiac surgery, 60%; 40 liver
transplantation, 40%) for testing. For transfer learning, of 2057
surgical cases, we used the data from 1572 cases (76.42%) for
pretraining and the data from 386 cases (18.77%; 245 cardiac
surgeries, 63.5%; 141 liver transplantations, 36.5%) for tuning.
Demographic information of the patients was not different
between the training and testing datasets, except, that the patients
in the testing dataset were slightly older (Table 1).
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Table 1. Demographics of patients for the training and testing dataset.

Statistical testTesting dataset (n=99)Training dataset (n=1958)Characteristic

P valueMethod used

.02Mann-Whitney U test63.8 (57.4-71.9)61.2 (51.2-69.5)Age, median (interquartile
range), years

.309Pearson chi-square test66 (67%)1195 (61.03%)Sex, number male (%)

.231Mann-Whitney U test163.4 (156.7-168.0)164.0 (157.3-170.0)Height, median (interquar-
tile range), years

.494Mann-Whitney U test64.0 (57.5-72.1)63.1 (55.2-72.4)Weight, median (interquar-
tile range), kg

The absolute error of the deep learning model for the testing
dataset was 14.5 (SD 13.4) mL (Table 2). In the subgroup
analysis, the absolute errors of the deep learning model were

10.2 (SD 8.4) mL for cardiac surgery and 17.4 (SD 15.3) for
liver transplantation.

Table 2. Stroke volume estimation of the deep learning model.

Liver transplantation (n=40),
mean (SD)

Cardiac surgery (n=59),
mean (SD)

Overall (n=99), mean (SD)Measure

–9.0 (21.3)2.3 (13.0)–4.4 (19.2)Error (mL)

17.4 (15.3)10.2 (8.4)14.5 (13.4)Absolute error (mL)

–5.5 (26.2)9.0 (26.8)0.4 (27.4)Percentage error (%)

20.4 (17.4)20.5 (19.4)20.5 (18.2)Absolute percentage error (%)

In the testing dataset, the data from 56 cases with both PAC
and FloTrac (16 cardiac surgery, 29%; 40 liver transplantation,
71%) data were used to compare the performance of the deep
learning model with that of the FloTrac. The absolute error of
the deep learning model was significantly lower than that of the
FloTrac (16.5 mL vs 18.3 mL, P<.001; Table 3). In the subgroup

analysis, the absolute errors of the deep learning model were
lower than those of the FloTrac, in both cardiac surgery (11.1
mL vs 14.3 mL, P<.001) and liver transplantation (17.4 mL vs
19.0 mL, P<.001; Table 3). The individual plots of the time
course of the measured and predicted SVs in all 99 testing cases
are available in Multimedia Appendix 2.

Table 3. Comparison of performance in stroke volume estimation between the deep learning model and FloTrac algorithm.

Statistical testFloTrac, mean (SD)Deep learning model, mean (SD)Measure

P valueCount, n

Error (mL)

<.001158725–8.4 (22.1)–7.9 (20.7)Overall (n=56)

<.001652602.7 (18.3)–1.7 (15.2)Cardiac surgery (n=16)

<.00193465–10.3 (22.2)–9.0 (21.3)Liver transplantation (n=40)

Absolute error (mL)

<.00115872518.3 (15.1)16.5 (14.8)Overall (n=56)

<.0016526014.3 (11.8)11.1 (10.5)Cardiac surgery (n=16)

<.0019346519.0 (15.4)17.4 (15.3)Liver transplantation (n=40)

Percentage error (%)

<.001158725–5.6 (28.6)–4.4 (26.9)Overall (n=56)

<.001652609.5 (34.9)1.8 (29.9)Cardiac surgery (n=16)

<.00193465–8.3 (26.5)–5.5 (26.2)Liver transplantation (n=40)

Absolute percentage error (%)

<.00115872522.5 (18.5)20.3 (18.3)Overall (n=56)

<.0016526025.4 (25.7)19.3 (22.9)Cardiac surgery (n=16)

<.0019346522.0 (16.9)20.4 (17.4)Liver transplantation (n=40)
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The Spearman rho value of our deep learning model was 0.64
(P<.001), whereas the rho value of the FloTrac was 0.57
(P<.001; Figure 2). Bland-Altman analysis demonstrated that
the lower and upper limits of agreements, respectively, were
–48.5 (95% CI –48.7 to –48.3) mL and 32.7 (95% CI 32.5-33.0)
mL for the deep learning model and –51.8 (95% CI –52.0 to

–51.5) mL and 35.0 (95% CI 34.8-35.3) mL for the FloTrac.
The 4-quadrant plot showed concordance rates of 53% for the
deep learning model and 46% for FloTrac (Figure 2). Mean
differences were smaller in our deep learning model than in the
commercial APCO device.

Figure 2. Scatter plot. (A) Bland-Altman plot with density highlight. (B) Four-quadrant plots. (C) Plot between target stroke volume and predicted
stroke volume. DL: deep learning; Flo: FloTrac; PAC: pulmonary artery catheter; SV: stroke volume.
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Discussion

Principal Results
In this study, we built and evaluated an open-source deep
learning–based APCO algorithm using a large set of
prospectively collected registry data. The performance of the
deep learning model was better than that of the FloTrac, the
commercially available APCO algorithm.

A mathematical analysis of the association between arterial
blood flow and pressure waveform has a long history of over
100 years [37]. A key factor in this flow-pressure association
is the estimation of systemic vascular resistance (SVR), because
the flow is determined by the pressure gradient and vascular
resistance [38]. However, since SVR changes with the patient's
condition, the coefficient also needs to be updated in real-time
[39-41]. An uncalibrated APCO algorithm, which automatically
updates the coefficient using the patient’s general characteristics
and arterial pressure waveforms, can be a convenient solution
in clinical situations. However, currently available commercial
uncalibrated APCO devices have been reported to work poorly
in patients with vasodilatory states such as sepsis or liver
transplantation [8,9,38,42,43]. Our results showed that our deep
learning–based APCO algorithm outperformed the FloTrac
algorithm in both cardiac surgery and liver transplantation
patients. However, both the deep learning–based and FloTrac
algorithms showed a positive bias in cardiac surgery patients,
who usually have low SVs, and a negative bias in liver
transplantation patients, who usually have high SVs. This
tendency to return to the average is also shown in Figure 2C
and may be a fundamental limitation of the APCO algorithm,
in which SVR should be estimated only from the arterial
pressure waveform and patient’s demographics. Otherwise, this
tendency may occur because most of the data obtained from
routine clinical practice are within the normal SV range.

Clinical, Academic, and Technical Implications
The measurement of CO is essential for clinical hemodynamic
optimization. As the deep learning model is more accurate than
the commercial APCO device, it can help enhance patient
management and improve final outcomes. For example,
goal-directed fluid therapy or SV optimization can be performed
using our model. However, further validation and
implementation are required for clinical applications. Disclosing
our dataset and model, researchers can improve the model and
validate our algorithm or their own algorithm. We believe that
this approach can facilitate developing more accurate APCO
algorithms and help in its clinical application. In the domain of
detecting arrhythmia in the electrocardiogram, numerous studies
and technologies have been proposed using publicly available
data, such as the MIT-BIH dataset [44-47]. Likewise, our open
dataset can be an academic reference for the APCO domain.
Finally, a transfer learning method was proposed based on 2
datasets with different characteristics in bio-signal fields, and

its scalability was confirmed. These techniques will provide
good technical strategies for developing machine learning
algorithms in the medical field with scanty data, such as
PAC-based CO.

Comparison With Prior Work
In a previous study, Moon et al [48] built a deep learning–based
APCO algorithm using the data of 31 liver transplantation
patients. However, their model only included the patients who
underwent liver transplantation and has not been validated in
the other types of surgery. In this study, a larger dataset was
used that included both cardiac surgery and liver transplantation
cases, with balanced ratios. In addition, a transfer learning
technique was used, in which the parameters were pretrained
with a large amount of APCO data and then tuned with PAC
data. This may explain why our model worked better than the
FloTrac for both cardiac and liver transplantation cases.

Limitations
This study has some limitations. First, the data used in this study
were from a single-center registry of a surgical cohort, which
may contain a limited range of CO. This problem can be
overcome by adding more data. However, the clinical use of
PAC is gradually decreasing; other modalities such as a Doppler
flowmeter or echocardiogram are required. Second, continuous
CO measurement methods used as ground-truth values in this
study can be less accurate in certain situations, such as in rapid
fluid administration, compared with the gold-standard
intermittent thermodilution technique [49]. In addition, the delay
time for processing in the Vigilance II monitor was not fully
revealed [24]. Third, there was a statistical difference in age
between the training and testing sets. This was an inevitable
problem that occurred because of the use of real-world clinical
data based on a prospective registry. However, elderly patients
may have isolated systolic hypertension, which may alter the
arterial pressure waveforms and affect the results. Fourth, there
was no visualization with explainable artificial intelligence
algorithms of how the proposed algorithm produces the results
[50,51]. A proposal for a method that can display an indication
for high or low CO and SVR from a waveform would have great
clinical benefit. Finally, although various technological methods
have been adopted, our developed model may be a local
optimum and not a global optimum. Therefore, the raw data of
this study was disclosed, allowing other researchers to improve
the model.

Conclusions
In conclusion, an uncalibrated APCO algorithm was developed
and validated using a CNN and a transfer learning technique.
The performance of our model was better than that of current
commercial, uncalibrated APCO devices. Further improvement
of the open-source algorithm developed in this study may be
helpful for estimating cardiac output accurately in clinical
practice and optimizing high-risk patient care.
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