4,233 research outputs found

    Research on Goods and the Ship Interaction Based on ADAMS

    Full text link

    Effects of photoperiod on body mass, thermogenesis and body composition in Eothenomys miletus during cold exposure

    Get PDF
    Many small mammals respond to seasonal changes in photoperiod by altering body mass and adiposity. These animals may provide valuable models for understanding the regulation of energy balance. In present study, we examined the effect on body mass, rest metabolic rate, food intake and body composition in cold-acclimated (5 °C) in Eothenomys miletus by transferring them from a short (SD, 8h :16h L: D) to long day photoperiod (LD, 16h: 8h L:D). During the first 4 weeks of exposure to SD, E. miletus decreased body mass. After the next 4 weeks of exposure to LD, which the average difference between body masses of LD and SD voles was 4.76 g. This 14.74% increase in body mass reflected significant increases in absolute amounts of body components, including wet carcass mass, dry carcass mass and body fat mass. After correcting body composition and organ morphology data for the differences in body mass, only livers, kidney, and small intestine were enlarged due to photoperiod treatment during cold exposure. E. miletus increased RMR and energy intake exposure to LD, but maintained a stable level to SD after 28 days. Serum leptin levels were positively correlated with body mass, body fat mass, RMR as well as energy intake. All of the results indicated that E. miletus may provide an attractive novel animal model for investigation of the regulation of body mass and energy balance at organism levels. Leptin is potentially involved in the photoperiod induced body mass regulation and thermogenesis in E. miletus during cold exposure

    A New Non-Abelian Topological Phase of Cold Fermi Gases in Anisotropic and Spin-Dependent Optical Lattices

    Full text link
    To realize non-Abelian s-wave topological superfluid (TS) of cold Fermi gases, generally a Zeeman magnetic field larger than superfluid pairing gap is necessary. In this paper we find that using an anisotropic and spin-dependent optical lattice (ASDOL) to trap gases, a new non-Abelian TS phase appears, in contrast to an isotropic and spin-independent optical lattice. A characteristic of this new non-Abelian TS is that Zeeman magnetic field can be smaller than the superfluid pairing gap. By self-consistently solving pairing gap equation and considering the competition against normal state and phase separation, this new phase is also stable. Thus an ASDOL supplies a convenient route to realize TS. We also investigate edge states and the effects of a harmonic trap potential

    Arabidopsis thaliana VDAC2 involvement in salt stress response pathway

    Get PDF
    Soil salinity seriously affects plants distribution and yield, while salt stress induces SOS genes, and voltage-dependent anion channels (VDAC) and a mitochondrial porin, are induced too. In this paper, phenotypes of AtVDAC2 transgenic lines and wild type (RLD) were analyzed. It was found that AtVDAC2 over-expressing transgenic plants were more sensitive to NaCl, and produced more H2O2 in the NaCl treatment. Also, to find the inner reason, the salt overly sensitive gene 3 (SOS3) expression level was changed with the expression of AtVDAC2. So, it was conjectured that the signal of salt stress response was first sent to AtVDAC2, then AtVDAC2 expression improved, leading to the down-stream signals changes, such as accumulation of H2O2 and improved expression of SOS3. So, it was found that in the over-expression of transgenic lines with AtVDAC2 up-regulation, SOS3 expression increased significantly, and in the inhibited-expressing lines, it was vice versa. In summary, AtVDAC2 was involved in salt stress signaling pathway, and it regulated SOS3 gene expression.Key words: Arabidopsis thaliana, voltage-dependent anion channels (VDAC), salt stress, signaling pathway
    • …
    corecore