10,667 research outputs found

    Doubly heavy baryon production at polarized photon collider

    Full text link
    We study the inclusive production of doubly heavy baryon Ξcc\Xi_{cc} at polarized photon collider. Our results show that proper choice of the initial beam polarizations may increase the production rate of Ξcc\Xi_{cc} approximately 10%.Comment: 9 pages, 5 figure

    A possible link between sinusitis and lower airway hypersensitivity: the role of Staphylococcal enterotoxin B

    Get PDF
    BACKGROUND AND AIMS: The prevalence of asthma has been keeping arising with unknown etiology. The cumulative evidence indicates that chronic rhinosinusitis (CRS) closely relates to asthma, but the detailed mechanisms remain unclear. The present study aimed to take insight into the role of Staphylococcus enterotoxin B (SEB) in a possible association between CRS and asthma. METHODS: 38 patients with both CRS and asthma underwent functional endoscopic sinus surgery. Serum specific IgE and cytokines, clinical symptoms of CRS and asthma were evaluated before and after the surgery. Peripheral blood mononuclear cells (PBMCs) were separated from the patients and cultured. Th2 response of the cultured PBMCs in the presence or absence of specific antigens and SEB was evaluated. RESULTS: Besides the improvement of CRS symptoms, amelioration of asthma was also observed in the patients with both CRS and asthma after the sinus surgery. The preoperatively elevated Th2 cytokines, IL-4 and IL-5, normalized postoperatively. Th2 response was generated with separated PBMCs in the presence of specific antigens. SEB was required for maintaining Th2 response in these separated PBMCs. CONCLUSION: The present results indicate that a possible link exists between CRS and lower airway hypersensitivity. Sinusitis derived SEB may play a role in sustaining Th2 responses in the low airway hypersensitivity related to sinusitis

    Pairwise Force SPH Model for Real-Time Multi-Interaction Applications

    Get PDF
    In this paper, we present a novel pairwise-force smoothed particle hydrodynamics (PF-SPH) model to allow modeling of various interactions at interfaces in real time. Realistic capture of interactions at interfaces is a challenging problem for SPH-based simulations, especially for scenarios involving multiple interactions at different interfaces. Our PF-SPH model can readily handle multiple kinds of interactions simultaneously in a single simulation; its basis is to use a larger support radius than that used in standard SPH. We adopt a novel anisotropic filtering term to further improve the performance of interaction forces. The proposed model is stable; furthermore, it avoids the particle clustering problem which commonly occurs at the free surface. We show how our model can be used to capture various interactions. We also consider the close connection between droplets and bubbles, and show how to animate bubbles rising in liquid as well as bubbles in air. Our method is versatile, physically plausible and easy-to-implement. Examples are provided to demonstrate the capabilities and effectiveness of our approach
    • …
    corecore