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ABSTRACT 
 
The objective of this study is to apply a multi-objective optimization 
algorithm for tuning parameters of the HBV rainfall-runoff model. This 
study selected the Non-Dominated Sorting Genetic Algorithm II 
(NSGA-II) as optimization algorithm and examined various objective 
functions for investigating the performance of the HBV model in 
different flow situations (e.g., low flow and high flow). Three common 
performance indexes were chosen as objective functions: root mean 
squared error (RMSE), mean absolute percentage error (MPE) and 
Nash-Sutcliffe (NS). Previous studies (e.g., Getahun and Van Laned, 
2015) showed that the HBV might give bias estimates for low and high 
flow situations. Thus, the study proposed a season-dependent 
calibration strategy for further improving the bias estimates in different 
flow situations. The strategy is composed of three parts: (1) the RMSE-
based objective function is used for wet seasons only (i.e., high flow 
situations); (2) the MPE-based objective function is used for dry 
seasons only (i.e., low flow situations); (3) the NS-based objective 
function is used for both wet and dry seasons. The preliminary results 
suggest that the proposed season-dependent strategy can improve the 
bias problems of HBV model.  
 
KEY WORDS: multi-objective optimization algorithm; the HBV 
rainfall-runoff model; calibration strategy. 
 
INTRODUCTION 
 
Conceptual rainfall-runoff models are widely used in hydrology for 
plenty of applications. However, a calibration procedure is need first 
and after that the models can be further applied for providing 
simulations or projections. The quality and accuracy of estimations 
largely depend on calibrating methods in conceptual rainfall-runoff 
models. Many methods have been used for estimating model 
parameters such as sensitivity and uncertainty analysis and ussing 
Multi-objective Shuffled Complex Evolution (MOSCEM) (Abebe, 
2010); Particle Swarm Optimization (PSO) for calibration of HEC-1 
lumped conceptual rainfall-runoff model (M.Zakermoshfegh, 2008) and 
Zhou et al., 2014 proposed a self-adaptive parameter and cultural 
algorithm are used successfully in calibration hydrological model. 
Among them, one attractive kind of methods, so called optimization 
algorithm, which has been received lots of attentions. This study 
attempts to apply an optimization algorithm (i.e., Non-Dominated 
Sorting Genetic Algorithm II, NSGA-II) for estimating model 

parameters and further investigate the benefit of using various objective 
functions. In terms of objective function, it is difficult when we use 
single-objective function for calibration good in both of low flow and 
high flow as the same time. Therefore, using multi-objective function to 
find the best parameter set is very important. 
 
This study used NSGA-II to investigate tunning parameters of a 
conceptual rainfall-runoff model (i.e., Modified Hydrologiska Byråns 
Vattenbalansavdelning Model, MHBV model) for Tsengwen reservoir 
catchmentin Southern Taiwan. The main objectives of this study are: 

 Integration of NSGA-II and MHBV. Using MATLAB to 
combine NSGA-II script and MHBV model in Fortran. 

 To investigate model performance by using various single 
and multi-objective functions. 

 Season-dependent strategy. 
 
STUDY AREA AND DATA SETS 
 
Study Area  
 
The Tsengwen Reservoir, with a storage capacity of about 7.8×108 m3, 
is the largest reservoir in Taiwan. The Tsengwen Reservoir was 
completed in 1973, having multifunction of the demands for agriculture, 
domestic use, flood control and hydropower generation. The Tsengwen 
Reservoir basin encloses area of 481 km2 (Figure 1), and is at an 
elevation of from 157 to 3,514 m above sea level. The mean annual 
precipitation is about 2,740 mm, of which nearly 90% occurs during the 
wet season (Figure 1). 
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Fig. 1. Tsengwen Reservoir basin and the monthly precipitation 
 
Data Sets 
 
Climate and hydrological data used in this work includes precipitation, 
streamflow and temperature, provided by Water Resource Agency, 
Taiwan. Long-term daily precipitations (1975-2014) are available from 
eight rain gauges, from which areal precipitations on the Tsengwen 



 

Reservoir basin were computed using the Thiessen polygon method. In 
this study, all the hydrological data were divided into two parts: (1) the 
calibration period is from 1975 to 2000 (26 years) and (2) the 
calibration period is from 2001 to 2014 (14 years). 
 
METHODOLOGIES 
 
MHBV Model 
 
The HBV hydrological model was designed at the Swedish 
Meteorological and Hydrological Institute and has been applied more 
than 40 countries (Bergström, 1976, 1992, 1995) all over the world. 
However, in this study the snow accumulation and melt routine of HBV 
was not used because snowy days are rarely occurred in Taiwan. HBV 
model was adjusted for the hydrological conditions of Taiwan and 
successfully tested in Taiwan (Yu and Yang, 2000; Yu et al., 2002; 
Yang et al., 2005) and so it was adopted for this study. 
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Fig. 2. Runoff responses, conceptual soil storage structure and water 
fluxes considered by the continuous rainfall-runoff model modified 
from HBV of Bergström (1976, 1992), which is referred to as MHBV 
 
NSGA-II Algorithm and Framework for Linking with 
MHBV 
 
NSGA-II algorithm is for resolving multi-objective problems. In this 
section, NSGA-II is introduced to solve study problems. It is very 
uncommon to have problems composed by only a single objective 
when dealing with real-world applications. Generally multiple, often 
conflicting, objectives arise naturally in most practical optimization 
problems. 
 
Optimization a problem means finding a set of decision variables which 
satisfies constraints and optimizes simultaneously functions of all 
decision makers. This vector optimization leads to a non-unique 
solution of the problem. 
 
There are a plenty of methods for solving multi-objective problem, but 
this study chooses NSGA-II as a tool to examine and simulate. 
 
NGSA-II is the second version of the famous “Non-dominated Sorting 
Genetic Algorithm” based on the work of Prof. Kalyanmoy Deb for 
solving non-convex and non-smooth single and multi-objective 
optimization problems. Its main features are: 

 A sorting non-dominated procedure where all the individual 
are sorting according to the level of non-domination 

 It implements elitism which stores all non-dominated 
solutions, and hence enhancing convergence properties 

 It adapts a suitable automatic mechanics based on the 
crowding distance in order to guarantee diversity and spread 
of solutions 

 Constraints are implemented using a modified definition of 
dominance without the use of penalty functions 

 
NSGA-II is a multi-objective genetic algorithm based on NSGA. 
However, Deb et al. (2002) called this algorithm as NSGA-II. This new 
algorithm from NSGA in a number of different points. In NSGA-II, 
non-dominated sorting mechanism has been changed, density 
estimation and crowded comparison operator is used instead of niche 
formation and finally elitist strategy is added to algorithm. 
 
For calibration and validation by using NSGA-II, there is an important 
thing which must be finished, that is linking NSGA-II and MHBV 
model. In this study, linkage process is based on NSGA-II version open 
source code in MATLAB. 
 
The basic idea for linking: All the input data for simulation MHBV 
model such as temperature, rainfall, streamflow,… must be added with 
9 parameters in MHBV in the first step. After that, the output of 
MHBV would be calculated with observation data as objective function. 
After getting objective function for NSGA-II, all scripts of NSGA-II 
will be iterated for tuning the best parameter set. (Fig. 3) 
Figure 3 shows the detail procedure for linking MHBV and NSGA-II. 
 

 
Fig. 3 Flowchart of linking MHBV model and NSGA-II algorithm 
 
* With the 100th generation, using 2 steps as below to get the 
compromise solution: Normalization and Calculation of distance 
+ Normalization 
 
To normalize data, traditionally this means to fit the data within unity 
(1), so all data values will take on a value of 0 to 1. The following 
equation is what should be used to implement a unity-based 
normalization for RMSE, MPE and Nash-Sutcliffe 
 

min

max min
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NS NS





                                                                  (3) 

where: 
RMSE(i), MPE(i), NS(i) = Each data point i 
RMSEmin, MPEmin, NSmin = The minima among all the data points 
RMSEmax, MPEmax, NSmax = The maxima among all the data points 
S_RMSE(i), S_MPE(i), S_NS(i) = The data point i normalized between 
0 and 1 
 
+ Calculation of distance 
 
3D Distance from one point to (x,y,z)=(0,0,0): 

2 2 2_ _ _Dis S RMSE S MPE S NS                                            (4) 
Pop_size= 250 => Having 250 distance is estimated 
The shortest (smallest) distance is the compromise solution. 
 
Calibration Strategies for MHBV Model 
 
There are three calibration strategies to tune parameter set for MHBV 
model. Three strategies are given as below: 
(1) Three single-objective functions 
(2) Multi-objective function 
(3) Multi-objective function with season-dependent data 
 
Firstly, three single-objective functions was introduced, that was single-
objective function with three objectives were chosen: root mean 
squared error (RMSE), mean absolute percentage error (MPE) and 
Nash-Sutcliffe (NS) (see equation 5, 6 and 7). With each single-
objective function, the best one parameter set would be found. 
Secondly, applying multi-objective function to get the compromise 
solution and compare with Strategy 1. 
 
RMSE, MPE and Nash-Sutcliffe formula: 
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Lastly, the study proposed a season-dependent calibration strategy in 
Strategy 3 for further improving the bias estimates in different flow 
situations. This strategy is composed of three parts: (1) the RMSE-
based objective function is used for wet seasons only (i.e.., high flow 
situations); (2) the MPE-based objective function is used for dry 
seasons only (i.e.., low flow situations); (3) the NS-based objective 
function is used for both wet and dry seasons. Based on this idea and 
real climate in Taiwan, Strategy 3 was divided into 2 cases: Case 1 with 
two parts of data, dry and wet season; Case 2 with typhoon season and 
dry season. These two cases would make three objective function 
changes. 

 

Fig. 4. Three strategies in this study 

 
RESULTS AND DISCUSSIONS 
 
A Comparison between the Results by Using Three Single-
objective Functions and Multi-objective Function 
 
There are three calibration strategies to tune parameter set for MHBV 
model. Three strategies are given as below: 

Table 1 Table of comparison parameter set in single-objective function 
and multi-objective function 

Parameters Range of 
parameters 

Single-objective function 
(Strategy 1) Multi-objective 

function      
(Strategy 2) RMSE MPE NS 

FC 0 – 400  398.61 171.36 400.00 121.15 

Beta 1 – 10  6.65 1.14 6.68 1.80 

LP/FC 0 – 1  0.12 0.21 0.15 0.30 

PERC 0 – 20 5.02 2.24 4.52 2.98 

UZL 0 – 200  152.83 65.87 152.12 81.29 

K0 0 – 1 .0 0.41 0.36 0.40 0.54 

K1 0 – 0.5 0.43 0.14 0.44 0.19 

K2 0 – 0.5 0.09 0.03 0.09 0.03

Ce 0 – 2.0 0.98 1.47 0.99 1.21 
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Table 2. shows comparison three performance indexes between single-
objective function and multi-objective function. RMSE-index in single-
objective function RMSE is better than RMSE-index in multi-objective 
function (7.10 and 7.31) in both of calibration and validation, MPE-
index in single-objective function MPE is also better than MPE in 
multi-objective function case, and the same for Nash-Sutcliffe 
coefficient. 
 
However, the important thing is multi-objective function can give a 
good set of three performance indexes.  
 

 
Fig. 5 Compromise solution in Pareto front of original case 
 
The Pareto front would be shown in Figure 5 with compromise solution. 
The red point in Figure 5 indicates compromise solution which is found 
by normalization three indexes and then calculation distance between 
each point in Pareto front to O (0;0;0) and take the smallest value. If 
only focusing on one objective-function, the parameter set would not 
good enough for the others. Compromise solution is trade-off of three 
objective functions and it is contented with multi-objective function. 
 
Table 2 Comparison three performance indexes between single-
objective function and multi-objective function 

Performance 
index 

Single-objective function (Strategy 1) Multi-
objective 
function

(Strategy 2) RMSE MPE NS 

C V C V C V C V 

RMSE 
(mm/day) 7.10 11.40 9.52 15.97 7.10 11.38 7.31 11.66 

NS 0.88 0.88 0.79 0.77 0.88 0.88 0.88 0.88 

MPE (%) 66.97 66.72 52.46 47.63 67.31 67.25 52.72 49.71 

Note: C stands for calibration and V stands for validation 
 
Improvement of Multi-objective Function 
 
In Table 3 and Table 4 show the comparison between Strategy 2 and 
Strategy 3 in the calibration and validation period, respectively. For 
each table, a,c is calculated by data of wet season (in Strategy 2) and 
typhoon season (in Strategy 3), b,d is calculated by dry season in two 
strategies. The tables show that there is a close improvement between 
Strategy 3 with Strategy 2. 

Table 3 Comparison parameter set of Strategy 2 and Strategy 3 in 
calibration period time  

Parameters 

Multi-objective function (Strategy 2 and 3) 

Strategy 2 Strategy 3-   
Case 1 Strategy 2 Strategy 3-   

Case 2 

FC 121.15 176.74 121.15 197.28 

Beta 1.80 2.65 1.80 3.32

LP/FC 0.30 0.53 0.30 0.74 

PERC 2.98 2.52 2.98 3.26 

UZL 81.29 109.68 81.29 90.19 

K0 0.54 0.42 0.54 0.50 

K1 0.19 0.35 0.19 0.26 

K2 0.03 0.03 0.03 0.03 

Ce 1.21 1.07 1.21 1.19 

RMSE 
(mm/day) 10.25a 10.03a 13.17c 13.01c 

NS 0.88 0.88 0.88 0.88 

MPE (%) 70.24b 72.74b 61.56d 62.96d 

 
Table 4 Comparison parameter set of Strategy 2 and Strategy 3 in 
validation period time  

Parameters 
Multi-objective function (Strategy 2 and 3) 

Strategy 2 Strategy 3-   
Case 1 Strategy 2 Strategy 3-   

Case 2 

FC 121.15 176.74 121.15 197.28 

Beta 1.80 2.65 1.80 3.32 

LP/FC 0.30 0.53 0.30 0.74 

PERC 2.98 2.52 2.98 3.26 

UZL 81.29 109.68 81.29 90.19 

K0 0.54 0.42 0.54 0.50 

K1 0.19 0.35 0.19 0.26 

K2 0.03 0.03 0.03 0.03 

Ce 1.21 1.07 1.21 1.19 

RMSE 
(mm/day) 16.42a 15.93a 20.73c 16.14c 

NS 0.88 0.88 0.88 0.88 

MPE (%) 66.11b 65.77b 60.26d 65.67d 

12th International Conference on Hydroscience & Engineering 
Hydro-Science & Engineering for Environmental Resilience 
November 6-10, 2016, Tainan, Taiwan. 
 



 

 
Fig. 6 Multi-objective function for simulated and observation 
hydrographs in validation period time (Strategy 3 – Case 1)  
 
In this case, the bias between simulated from model and observation 
data are good enough. The first hydrograph is in mathematical scale 
shows high flow bias, and the second one shows low flow clearly 
(Figure 6). In validation period time from 2001 to 2014, the simulation 
have a good trend in both high flow and low flow. 
 

 
 
Fig. 7 Multi-objective function for simulated and observation 
hydrographs in validation period time (Strategy 3 – Case 2) 
 
In this case, the bias between simulated from model and observation 
data are good enough. The first hydrograph is in mathematical scale 
shows high flow bias, and the second one shows low flow clearly. 
However, the bias in these hydrographs are worse than Strategy 3 – 
Case 1 (Fig. 7).  
 
In Strategy 3 – Case 2, the streamflow simulation are also better than 
simulation in Strategy 2. However, comparison with Case 1, Strategy 
3 – Case 1 indicates better results in simulation than Case 2 when using 
two seasons in dividing data: dry and wet season. 
 

 

                      (a)                                 (b) 

          (c)                                (d) 

                      (e)                                 (f) 

 
Fig. 8 The best case of simulation in validation period (2004). (a) and 
(b) are monthly streamflow simulation in Strategy 2, (c) and (d) are 
monthly streamflow simulation in Strategy 3 – Case 1, (e) and (f) are 
monthly streamflow simulation in Strategy – Case 2. 
 
CONCLUSIONS 
 
This study used multi-objective function (NSGA-II) to tune parameters 
set of MHBV for Tsengwen reservoir catchment and investigated the 
model performance by using different calibration strategies.  
 
Firstly, the NSGA-II was applied successfully in calibration MHBV 
model with high performance in RMSE, MPE and Nash-Sutcliffe. 
Besides, the hydrographs in calibration and validation periods also 
show satisfactory results in both high flow and low flow situations. 
 
Secondly, calibration strategies are also effective. They can improve 
the MHBV simulation. Better than original application when data were 
divided and lead to change meaning of objective function based on 
season-dependent strategy. It improved simulation in low flow and high 
flow not so much, but with the simulation it has meaningful. 
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