125,727 research outputs found

    Codes Cross-Correlation Impact on S-curve Bias and Data-Pilot Code Pairs Optimization for CBOC Signals

    Get PDF
    The aim of this paper is to analyze the impact of spreading codes cross-correlation on code tracking performance, and to optimize the data-pilot code pairs of Galileo E1 Open Service (OS) Composite Binary Offset Carrier (CBOC) signals. The distortion of the discriminator function (i.e., S-curve), due to data and pilot spreading codes cross-correlation properties, is evaluated when only the data or pilot components of CBOC signals are tracked, considering the features of the modulation schemes. Analyses show that the S-curve bias also depends on the receiver configuration (e.g., the tracking algorithm and correlator spacing). In this paper, two methods are proposed to optimize the data-pilot code pairs of Galileo E1 OS. The optimization goal is to obtain minimum average S-curve biases when tracking only the pilot components of CBOC signals for the specific correlator spacing. The S-curve biases after optimization processes are analyzed and compared with the un-optimized results. It is shown that the optimized data-pilot code pairs could significantly mitigate the intra-channel (i.e., data and pilot) codes cross-correlation,and then improve the code tracking performance of CBOC signals

    Intrinsic Spin and Orbital-Angular-Momentum Hall Effect

    Full text link
    A generalized definition of intrinsic and extrinsic transport coefficients is introduced. We show that transport coefficients from the intrinsic origin are solely determined by local electronic structure, and thus the intrinsic spin Hall effect is not a transport phenomenon. The intrinsic spin Hall current is always accompanied by an equal but opposite intrinsic orbital-angular-momentum Hall current. We prove that the intrinsic spin Hall effect does not induce a spin accumulation at the edge of the sample or near the interface.Comment: References update

    Wave packet transmission of Bloch electron manipulated by magnetic field

    Full text link
    We study the phenomenon of wave packet revivals of Bloch electrons and explore how to control them by a magnetic field for quantum information transfer. It is showed that the single electron system can be modulated into a linear dispersion regime by the "quantized" flux and then an electronic wave packet with the components localized in this regime can be transferred without spreading. This feature can be utilized to perform the high-fidelity transfer of quantum information encoded in the polarization of the spin. Beyond the linear approximation, the re-localization and self-interference occur as the novel phenomena of quantum coherence.Comment: 6 pages, 5 figures, new content adde

    Spin filtering implemented through Rashba and weak magnetic modulations

    Full text link
    We present two theoretical schemes for spin filters in one-dimensional semiconductor quantum wires with spatially modulated Rashba spin-orbit coupling (SOC) as well as weak magnetic potential. For case I, the SOC is periodic and the weak magnetic potential is applied uniformly along the wire. Full spin polarizations with opposite signs are obtained within two separated energy intervals. For case II, the weak magnetic potential is periodic while the SOC is uniform. An ideal negative/positive switching effect for spin polarization is realized by tuning the strength of SOC. The roles of SOC, magnetic potential, and their coupling on the spin filtering are analyzed.Comment: 4 pages, 4 figure

    Dimerization-assisted energy transport in light-harvesting complexes

    Full text link
    We study the role of the dimer structure of light-harvesting complex II (LH2) in excitation transfer from the LH2 (without a reaction center (RC)) to the LH1 (surrounding the RC), or from the LH2 to another LH2. The excited and un-excited states of a bacteriochlorophyll (BChl) are modeled by a quasi-spin. In the framework of quantum open system theory, we represent the excitation transfer as the total leakage of the LH2 system and then calculate the transfer efficiency and average transfer time. For different initial states with various quantum superposition properties, we study how the dimerization of the B850 BChl ring can enhance the transfer efficiency and shorten the average transfer time.Comment: 11 pages, 6 figure

    Baryons as Solitons in Three Dimensional Quantum Chromodynamics

    Full text link
    We show that baryons of three dimensional Quantum Chromodynamics can be understood as solitons of its effective lagrangian. In the parity preserving phase we study, these baryons are fermions for odd NcN_c and bosons for even NcN_c, never anyons. We quantize the collective variables of the solitons and there by calculate the flavor quantum numbers, magnetic moments and mass splittings of the baryon. The flavor quantum numbers are in agreement with naive quark model for the low lying states. The magnetic moments and mass splittings are smaller in the soliton model by a factor of logFπNcmπ\log {F_\pi\over N_c m_\pi}. We also show that there is a dibaryon solution that is an analogue of the deuteron. These solitons can describe defects in a quantum anti--ferromagnet.Comment: 22 pages + 4 figures (figures not included, postscript files available upon request
    corecore