46 research outputs found
Towards the Success Rate of One: Real-time Unconstrained Salient Object Detection
In this work, we propose an efficient and effective approach for
unconstrained salient object detection in images using deep convolutional
neural networks. Instead of generating thousands of candidate bounding boxes
and refining them, our network directly learns to generate the saliency map
containing the exact number of salient objects. During training, we convert the
ground-truth rectangular boxes to Gaussian distributions that better capture
the ROI regarding individual salient objects. During inference, the network
predicts Gaussian distributions centered at salient objects with an appropriate
covariance, from which bounding boxes are easily inferred. Notably, our network
performs saliency map prediction without pixel-level annotations, salient
object detection without object proposals, and salient object subitizing
simultaneously, all in a single pass within a unified framework. Extensive
experiments show that our approach outperforms existing methods on various
datasets by a large margin, and achieves more than 100 fps with VGG16 network
on a single GPU during inference
Visual Search at eBay
In this paper, we propose a novel end-to-end approach for scalable visual
search infrastructure. We discuss the challenges we faced for a massive
volatile inventory like at eBay and present our solution to overcome those. We
harness the availability of large image collection of eBay listings and
state-of-the-art deep learning techniques to perform visual search at scale.
Supervised approach for optimized search limited to top predicted categories
and also for compact binary signature are key to scale up without compromising
accuracy and precision. Both use a common deep neural network requiring only a
single forward inference. The system architecture is presented with in-depth
discussions of its basic components and optimizations for a trade-off between
search relevance and latency. This solution is currently deployed in a
distributed cloud infrastructure and fuels visual search in eBay ShopBot and
Close5. We show benchmark on ImageNet dataset on which our approach is faster
and more accurate than several unsupervised baselines. We share our learnings
with the hope that visual search becomes a first class citizen for all large
scale search engines rather than an afterthought.Comment: To appear in 23rd SIGKDD Conference on Knowledge Discovery and Data
Mining (KDD), 2017. A demonstration video can be found at
https://youtu.be/iYtjs32vh4
Enhanced and shortened Mn 2+ emissions by Cu + co-doping in borosilicate glasses for W-LEDs
A novel pair of transition metal ions Cu+, Mn2+ is co-doped in borosilicate glasses. Both copper and manganese ions exist in lower valence states (Cu+, Mn2+) in the as-prepared glasses. Around 5-time enhanced Mn2+ emission under the UV excitation is observed, which, as demonstrated by excitation spectra and emission decay curves, is due to an energy transfer from Cu+ ions resulting in greatly increased absorption of Mn2+ ions in the UV region, and relaxation on doubly-forbidden transition of Mn2+ leading to the much shortened Mn2+ emission lifetime from millisecond to microsecond level. Besides, a composite white emission is generated by combining the blue-green part from Cu+ ions with the green-red part from Mn2+ ions and it can be effectively tuned from cold to warm by adjusting host glass composition and altering excitation wavelength. Relevant mechanisms are discussed
CgGCS, Encoding a Glucosylceramide Synthase, Is Required for Growth, Conidiation and Pathogenicity in Colletotrichum gloeosporioides
Fungal glucosylceramide plays important role in cell division, hyphal formation and growth, spore germination and the modulation of virulence and has recently been considered as target for small molecule inhibitors. In this study, we characterized CgGCS, a protein encoding a glucosylceramide synthase (GCS) in Colletotrichum gloeosporioides. Disruption of CgGCS resulted in a severe reduction of mycelial growth and defects in conidiogenesis. Sphingolipid profile analysis revealed large decreases in glucosylceramide production in the mutant strains. Pathogenicity assays indicated that the ability of the ΔCgGCS mutants to invade both tomato and mango hosts was almost lost. In addition, the expression levels of many genes, especially those related to metabolism, were shown to be affected by the mutation of CgGCS via transcriptome analysis. Overall, our results demonstrate that C. gloeosporioides glucosylceramide is an important regulatory factor in fungal growth, conidiation, and pathogenesis in hosts
Fusaric acid instigates the invasion of banana by Fusarium oxysporum f. sp. cubense TR4
CITATION: Liu, S. et al. 2020. Fusaric acid instigates the invasion of banana by Fusarium oxysporum f. sp. cubense TR4. New Phytologist, 225:913–929, doi:10.1111/nph.16193.The original publication is available at https://nph.onlinelibrary.wiley.comFusaric acid (FSA) is a phytotoxin produced by several Fusarium species and has been associated with plant disease development, although its role is still not well understood.
Mutation of key genes in the FSA biosynthetic gene (FUB) cluster in Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4) reduced the FSA production, and resulted in decreased disease symptoms and reduced fungal biomass in the host banana plants.
When pretreated with FSA, both banana leaves and pseudostems exhibited increased sensitivity to Foc TR4 invasion. Banana embryogenic cell suspensions (ECSs) treated with FSA exhibited a lower rate of O2 uptake, loss of mitochondrial membrane potential, increased reactive oxygen species (ROS) accumulation, and greater nuclear condensation and cell death. Consistently, transcriptomic analysis of FSA-treated ECSs showed that FSA may induce plant cell death through regulating the expression of genes involved in mitochondrial functions.
The results herein demonstrated that the FSA from Foc TR4 functions as a positive virulence factor and acts at the early stage of the disease development before the appearance of the fungal hyphae in the infected tissues.https://nph.onlinelibrary.wiley.com/doi/full/10.1111/nph.16193Publisher's versio
NOA1 Functions in a Temperature-Dependent Manner to Regulate Chlorophyll Biosynthesis and Rubisco Formation in Rice
NITRIC OXIDE-ASSOCIATED1 (NOA1) encodes a circularly permuted GTPase (cGTPase) known to be essential for ribosome assembly in plants. While the reduced chlorophyll and Rubisco phenotypes were formerly noticed in both NOA1-supressed rice and Arabidopsis, a detailed insight is still necessary. In this study, by using RNAi transgenic rice, we further demonstrate that NOA1 functions in a temperature-dependent manner to regulate chlorophyll and Rubisco levels. When plants were grown at 30°C, the chlorophyll and Rubisco levels in OsNOA1-silenced plants were only slightly lower than those in WT. However, at 22°C, the silenced plants accumulated far less chlorophyll and Rubisco than WT. It was further revealed that the regulation of chlorophyll and Rubisco occurs at the anabolic level. Etiolated WT seedlings restored chlorophyll and Rubisco accumulations readily once returned to light, at either 30°C or 15°C. Etiolated OsNOA1-silenced plants accumulated chlorophyll and Rubisco to normal levels only at 30°C, and lost this ability at low temperature. On the other hand, de-etiolated OsNOA1-silenced seedlings maintained similar levels of chlorophyll and Rubisco as WT, even after being shifted to 15°C for various times. Further expression analyses identified several candidate genes, including OsPorA (NADPH: protochlorophyllide oxidoreductase A), OsrbcL (Rubisco large subunit), OsRALyase (Ribosomal RNA apurinic site specific lyase) and OsPuf4 (RNA-binding protein of the Puf family), which may be involved in OsNOA1-regulated chlorophyll biosynthesis and Rubisco formation. Overall, our results suggest OsNOA1 functions in a temperature-dependent manner to regulate chlorophyll biosynthesis, Rubisco formation and plastid development in rice