2,395 research outputs found

    The minimum time estimation for initiating tumor-cell attachment

    Get PDF
    [[abstract]]This work presents the first part of a new framework for preventing the tumor-cell of carcinoma in situ transition from one organ to others. Using an ECIS (electric cell-substrate impedance sensing) chip coated with glutaraldehyde (GA)-crosslinked gelatin patterns suitable for cell attachment, the authors monitor the cell adhesion situation not only by optical microscope but also by electrical means. Therefore the authors design an experiment and a microfluidic chip for investigating the relationship between the metastasis and the surface morphology of blood vessels.[[incitationindex]]EI[[conferencetype]]國際[[conferencedate]]20110605~20110609[[conferencelocation]]Beijing, Chin

    Locally constrained diffusion process on locally densified distance spaces with applications to shape retrieval

    Get PDF

    Comparative investigation of damage induced by diatomic and monoatomic ion implantation in silicon

    Get PDF
    The damaging effect of mono- and diatomic phosphorus and arsenic ions implanted into silicon was investigated by spectroscopic ellipsometry (SE) and high-depth-resolution Rutherford backscattering and channeling techniques. A comparison was made between the two methods to check the capability of ellipsometry to examine the damage formed by room temperature implantation into silicon. For the analysis of the spectroscopic ellipsometry data we used the conventional method of assuming appropriate optical models and fitting the model parameters (layer thicknesses and volume fractions of the amorphous silicon component in the layers) by linear regression. The depth dependence of the damage was determined by both methods. It was revealed that SE can be used to investigate the radiation damage of semiconductors together with appropriate optical model construction which can be supported or independently checked by the channeling method. However, in case of low level damage (consisting mainly of isolated point defects) ellipsometry can give false results, overestimating the damage using inappropriate dielectric functions. In that case checking by other methods like channeling is desirable

    Effect of the flow leading slats obliquity on the thermal performance of air-cooled condensers in a power plant

    Get PDF
    Paper presented at the 8th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Mauritius, 11-13 July, 2011.Ambient winds may bring on poor fan performance and deteriorated heat rejection of the air-cooled condensers in a power plant. The disadvantageous wind impacts can be weakened thanks to the flow field leading of the wind. By introducing a radiator model to the fin-tube bundles, the airside fluid and heat flow in air-cooled condensers with a flow guiding device in a representative 2 × 600MW direct dry cooling power plant are modeled and calculated. The flow rate and heat rejection of the individual condenser cells and the aircooled condensers with flow guiding devices at different slat obliquities are obtained and compared. The results show that the flow rate and heat rejection of the air-cooled condensers both increase owing to the setup of the flow guiding device. The low flow guiding slats obliquity is superior to the high one for the thermo-flow performances. For the upwind condenser cells, the flow and heat transfer rates vary widely due to the flow field leading of the ambient winds by the flow guiding device especially at the lowered obliquity. It can be of use for the optimal design and operation of air-cooled condensers in a power plant.mp201

    Bosonization Theory of Excitons in One-dimensional Narrow Gap Semiconductors

    Full text link
    Excitons in one-dimensional narrow gap semiconductors of anti-crossing quantum Hall edge states are investigated using a bosonization method. The excitonic states are studied by mapping the problem into a non-integrable sine-Gordon type model. We also find that many-body interactions lead to a strong enhancement of the band gap. We have estimated when an exciton instability may occur.Comment: 4pages, 1 figure, to appear in Phys. Rev. B Brief Report

    A REAL TIME MONITORING MODEL OF THE CALCIUM CARBONATE FOULING INDUCTION PERIOD BASED ON THE CONDUCTANCE TITRATION

    Get PDF
    A new method has been developed to monitor the calcium carbonate fouling induction period (CCFIP) in real time. Based on the conductance titration, this paper investigated the forming process of CCFIP by a staticdynamic combined simulation experiment unit. With the help of titration analysis (that is titrimetry), an accurate definition of CCFIP and the corresponding real time monitoring model were built up. The investigation results show that the proposed model applies not only to measure the CCFIP in real time, but also applies to an investigation of the influence of various factors on the CCFIP

    A self-consistent method to analyze the effects of the positive Q-value neutron transfers on fusion

    Get PDF
    AbstractConsidering the present limitation of the need for external parameters to describe the nucleus–nucleus potential and the couplings in the coupled-channels calculations, this work introduces an improved method without adjustable parameter to overcome the limitation and then sort out the positive Q-value neutron transfers (PQNT) effects based on the CCFULL calculations. The corresponding analysis for Ca+Ca, S,Ca+Sn, and S,Ca+Zr provides a reliable proof and a quantitative evaluation for the residual enhancement (RE) related to PQNT. In addition, the RE for S32,Ca40+Zr94 shows an unexpected larger enhancement than S32,Ca40+Zr96 despite the similar multi-neutron transfer Q-values. This method should rather strictly test the fusion models and be helpful for excavating the underlying physics
    • …
    corecore