research

Comparative investigation of damage induced by diatomic and monoatomic ion implantation in silicon

Abstract

The damaging effect of mono- and diatomic phosphorus and arsenic ions implanted into silicon was investigated by spectroscopic ellipsometry (SE) and high-depth-resolution Rutherford backscattering and channeling techniques. A comparison was made between the two methods to check the capability of ellipsometry to examine the damage formed by room temperature implantation into silicon. For the analysis of the spectroscopic ellipsometry data we used the conventional method of assuming appropriate optical models and fitting the model parameters (layer thicknesses and volume fractions of the amorphous silicon component in the layers) by linear regression. The depth dependence of the damage was determined by both methods. It was revealed that SE can be used to investigate the radiation damage of semiconductors together with appropriate optical model construction which can be supported or independently checked by the channeling method. However, in case of low level damage (consisting mainly of isolated point defects) ellipsometry can give false results, overestimating the damage using inappropriate dielectric functions. In that case checking by other methods like channeling is desirable

    Similar works