221 research outputs found

    Approaches for Modeling Anaerobic Granule-Based Reactors

    Get PDF
    Anaerobic granule sludge is a self-forming biofilm. This biofilm can be developed without the presence of bio-carriers. Anaerobic granule sludge-based technologies are dominant technologies in the field of anaerobic wastewater treatment. Although they are successful technologies, many efforts are still needed for a better understanding of the granules and granule-based reactors because reactor failure can occur. Here, reactor modeling is highly helpful in understanding the performance of anaerobic bioreactors. A model that can accurately model bioprocesses in a sludge bed reactor and predict concentrations of effluent components is valuable. This is because the model can provide insights into the reactor and be useful in reactor control. Current models of granules are models on bioprocesses in a single granule sludge or on the hydrodynamics and biokinetics in a sludge bed reactor. Here, we review advances in reactor model and its applications as well as limitations and further improvements in the models

    Fault-tolerant Hamiltonian laceability of Cayley graphs generated by transposition trees

    Get PDF
    AbstractA bipartite graph is Hamiltonian laceable if there exists a Hamiltonian path joining every pair of vertices that are in different parts of the graph. It is well known that Cay(Sn,B) is Hamiltonian laceable, where Sn is the symmetric group on {1,2,…,n} and B is a generating set consisting of transpositions of Sn. In this paper, we show that for any F⊆E(Cay(Sn,B)), if |F|≤n−3 and n≥4, then there exists a Hamiltonian path in Cay(Sn,B)−F joining every pair of vertices that are in different parts of the graph. The result is optimal with respect to the number of edge faults

    A Hierarchical Load Balancing Strategy Considering Communication Delay Overhead for Large Distributed Computing Systems

    Get PDF
    Load balancing technology can effectively exploit potential enormous compute power available on distributed systems and achieve scalability. Communication delay overhead on distributed system, which is time-varying and is usually ignored or assumed to be deterministic for traditional load balancing strategies, can greatly degrade the load balancing performance. Considering communication delay overhead and its time-varying feature, a hierarchical load balancing strategy based on generalized neural network (HLBSGNN) is presented for large distributed systems. The novelty of the HLBSGNN is threefold: (1) the hierarchy with optimized communication is employed to reduce load balancing overhead for large distributed computing systems, (2) node computation rate and communication delay randomness imposed by the communication medium are considered, and (3) communication and migration overheads are optimized via forecasting delay. Comparisons with traditional strategies, such as centralized, distributed, and random delay strategies, indicate that the HLBSGNN is more effective and efficient

    Large Quantum Anomalous Hall Effect in Spin-Orbit Proximitized Rhombohedral Graphene

    Full text link
    The quantum anomalous Hall effect (QAHE) is a robust topological phenomenon that features quantized Hall resistance at zero magnetic field. Here we report the observation of the QAHE in a rhombohedral pentalayer graphene/monolayer WS2 heterostructure. Distinct from all existing QAHE systems, this system has neither magnetic element nor moir\'e superlattice effect. The QAH states emerge at charge neutrality and feature Chern numbers C = +-5 at temperatures up to about 1.5 K. This large QAHE in our system arises from the synergy of the electron correlation effect in intrinsic flat bands of pentalayer graphene, the gate-tuning effect that breaks the layer/spin-degeneracy, and the proximity-induced Ising spin-orbit-coupling (SOC) effect that further lifts the valley-degeneracy. Our experiment demonstrates the great potential of crystalline two-dimensional materials for intertwined electron correlation and band topology physics, and points to engineering chiral Majorana edge states towards topological quantum computation

    Evolution of Near-Well Damage Caused by Fluid Injection through Perforations in Wellbores in Low-Permeability Reservoirs: A Case Study in a Shale Oil Reservoir

    Get PDF
    AbstractDuring the development of shale oil resources, fluid injection is usually involved in the process of hydraulic fracturing. Fluid injection through perforations causes near-well damage, which is closely related to the subsequent initiation and propagation of hydraulic fractures. This study is focused on the characterization of the temporal and spatial evolving patterns for near-well damage induced by fluid injection through perforations in the early stage of hydraulic fracturing. A coupled hydromechanical model is introduced in a case study in a shale oil reservoir in northwestern China. The model considers porous media flow during fluid injection. It also considers elasticity in the rock skeleton before the damage. Once the damage is initiated, a damage factor is employed to quantify the magnitude of injection-induced damage. Results show that damage evolution is highly sensitive to perforation number and injection rate in each individual perforation. Damage propagation is more favorable in the direction of the initial maximum horizontal principal stress. The propagation of damage is drastic at the beginning of fluid injection, while the damage front travels relatively slow afterward. This study provides insights into the near-well damage evolution before main fractures are initiated and can be used as a reference for the optimization of perforation parameters in the hydraulic fracturing design in this shale oil field

    Porous chitosan microspheres as microcarriers for 3D cell culture

    Get PDF
    The final publication is available at Elsevier via https://doi.org/10.1016/j.carbpol.2018.09.021 © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/Highly porous chitosan microspheres (CSM) were prepared through emulsion-based thermally induced phase separation (TIPS) without using toxic crosslinkers and chemical porogenic agents other than ice. The CSM had an average diameter of ∼150 μm with interconnected pores varying from 20∼50 μm in size. Due to their excellent biocompatibility and unique porous structure, high-performance hepatocyte culture in three-dimensional (3D) space was achieved using the CSM as microcarriers, as cell growth also took place within the internal pores of the CSM, besides their external surface, and multidirectional cell–cell interactions were observed. Enhanced cellular activity and functions were obtained with the CSM microcarriers as compared with 2D cell culture. It is believed that these CSM microcarriers provide a promising platform for 3D cell culture in vitro.National Natural Science Foundation of China General Program (Nos. 51803067, 21574050 and 21774039) China Postdoctoral Science Foundation (General Program, No. 2015M580640) Science and Technology Support Plan in Jiangsu Province, China (BE2014684) Independent innovation research funding of Huazhong University of Science and Technology (2014XJGH009

    Biodegradable double-network GelMA-ACNM hydrogel microneedles for transdermal drug delivery

    Get PDF
    As a minimally invasive drug delivery platform, microneedles (MNs) overcome many drawbacks of the conventional transdermal drug delivery systems, therefore are favorable in biomedical applications. Microneedles with a combined burst and sustained release profile and maintained therapeutic molecular bioactivity could further broaden its applications as therapeutics. Here, we developed a double-network microneedles (DN MNs) based on gelatin methacrylate and acellular neural matrix (GelMA-ACNM). ACNM could function as an early drug release matrix, whereas the addition of GelMA facilitates sustained drug release. In particular, the double-network microneedles comprising GelMA-ACNM hydrogel has distinctive biological features in maintaining drug activity to meet the needs of application in treating different diseases. In this study, we prepared the double-network microneedles and evaluated its morphology, mechanical properties, drug release properties and biocompatibility, which shows great potential for delivery of therapeutic molecules that needs different release profiles in transdermal treatment
    • …
    corecore