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Chapter

Approaches for Modeling 
Anaerobic Granule-Based Reactors
Jixiang Yang

Abstract

Anaerobic granule sludge is a self-forming biofilm. This biofilm can be devel-
oped without the presence of bio-carriers. Anaerobic granule sludge-based tech-
nologies are dominant technologies in the field of anaerobic wastewater treatment. 
Although they are successful technologies, many efforts are still needed for a better 
understanding of the granules and granule-based reactors because reactor failure 
can occur. Here, reactor modeling is highly helpful in understanding the perfor-
mance of anaerobic bioreactors. A model that can accurately model bioprocesses in 
a sludge bed reactor and predict concentrations of effluent components is valuable. 
This is because the model can provide insights into the reactor and be useful in 
reactor control. Current models of granules are models on bioprocesses in a single 
granule sludge or on the hydrodynamics and biokinetics in a sludge bed reactor. 
Here, we review advances in reactor model and its applications as well as limitations 
and further improvements in the models.

Keywords: anaerobic, granule, model, wastewater, sludge, modeling

1. Introduction

The phenomenon of anaerobic sludge granulation was first observed in the 
1990s. Extensive experimental works have been implemented since then. The 
culture conditions for forming the anaerobic granular sludge are well understood 
[1]. A high upflow velocity (usually >1 m/h) is usually required. The diameters of 
anaerobic granules can be up to 0.15–4 mm, which results in high free sedimenta-
tion velocities, that is, 15–50 m/h. The high sedimentation velocities can make a 
large amount of highly active granular sludge retained in a bioreactor in a highly 
efficient way. By 2007, the market share for anaerobic granule sludge-based technol-
ogies in the field of anaerobic wastewater treatment was 89%. Anaerobic granular 
sludge-based technologies have been extensively applied to treat wastewater from 
different industries, including agriculture, food, beverage, alcohol distillery, pulp, 
and papermaking.

Bioreactors involved in wastewater treatment are complex systems, and many 
nonlinear biokinetics occur in the bioreactors. A model that can successfully model 
bioprocesses in the bioreactors is effective in understanding the bioreactors and 
their manipulation. Versus aerobic wastewater treatment, modeling an anaerobic 
wastewater treatment is much more difficult. This chapter summarizes different 
model strategies for a granular sludge bed reactor. These strategies are beneficial for 
further model development and applications.
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2. Bioparticle model

The distribution of microorganisms in an anaerobic granule has big impacts on 
modeling the bioactivity of this granule. Different microbial structures for gran-
ules are identified. A layered and a cluster granular sludge structures are observed 
[2]. Here, three layers are proposed. The outermost layer includes acidogens and 
hydrogen-consuming organisms. In the middle layer, hydrogen-producing organ-
isms as well as hydrogen-consuming organisms both exist, while Methanosaeta 
locate in the core layer. In this clustered structure, Methanosaeta clusters and 
zones with syntrophic eubacteria and hydrogenotrophic methanogens scatter in 
the granule.

A granular sludge bed consists of numeral sludge granules. Modeling substrate 
degradation in a single sludge granule has other applications. Indeed, understanding 
bioreactions in a single granule can explain the operation of an entire bioreac-
tor. Two strategies are used to model substrate degradation in a single granule. 
Modeling strategies are both termed bioparticle models in this study. The biopar-
ticle models are discussed below.

2.1 Diffusion-reaction model

A diffusion-reaction model couples mass transfer and substrate degradation 
kinetics in a single granule. Some assumptions need to be made to establish a 
diffusion-reaction model. The shape of real granules in reactors is irregular and 
nonuniform. In addition, the biogas that results from bioprocesses contributes 
to the formation of pores in the inner space of a granule. Water and biomass are 
different materials and constitute a granule. Therefore, substrate diffusion in 
the inner space of a granule is different at different locations. Nevertheless, some 
assumptions are adopted for building a typical diffusion-reaction model to simplify 
the difficulty in modeling and ensure model accuracy. The assumptions are listed 
here: (1) the granules are spherical and uniform; (2) only radial diffusion transport 
is considered and is described by Fick’s law; (3) the diffusion coefficient is constant; 
and (4) there are no active biomass gradients in the granules at time zero [3].

A representative granule is assumed in a diffusion-reaction model [3, 4]. A typi-
cal diffusion-reaction model is characterized by the following equations:

   D  i   (  
 d   2   S  i   (r) 

 _ 
 dr   2 

   +   2 _ r     
 dS  i   (r) 

 _ 
dr

  )  +  r  i   = 0.  (1)

with two boundary conditions:

   
  
 dS  i   _ 
dr

   = 0, at r = 0
   

 S  i   =  S  i,sur  , at r = R
   (2)

where Si is the substrate concentration of component i in the granule, Si,sur is 
the substrate concentration of component i in the granule surface, ri is the volu-
metric substrate conversion rate in the granule, and Di is the diffusion coefficient 
of substrate I; r is the distance from the granule center.

The diffusion-reaction model was successfully applied in an anaerobic ammo-
nium oxidation (ANAMMOX) granule [3]. However, the above diffusion-reaction 
model must be revised accordingly, while other sludge granules are modeled. The 
ANAMMOX reaction is a simple and single reaction that involves simple substrates. 
If a complex substrate is involved in a diffusion-reaction model, then a hydroly-
sis process as well as other downstream processes are involved, and it is hard to 
calibrate the kinetic parameters for each process. In addition, assumption (4) for 
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a diffusion-reaction model may not be true for complex substrates such as carbohy-
drates. If a carbohydrate is used as the substrate, then a multilayer model could be 
a better alternative. In the multilayer model, a granule is divided into three layers: 
H2, producing acetogens; H2, consuming organisms (Methanothrix); and acidogens. 
Furthermore, the boundary conditions (Eq. (2)) should be revised accordingly, 
while substrate concentrations at the core of a representative granule are not zero or 
there is a pore at the core of the representative granule.

2.2 Individual-based model

In the other model, substrate degradation can be coupled with the dynamic 
growth of a sludge granule. In the dynamic growth process, the sludge granule 
consists of many bacteria, and the granular surface growth and detachment are 
involved. The model is called an individual-based model (IBM) because the model 
is based on each single individual bacterium.

The IBM significantly differs from the above diffusion-reaction model. The size 
and shape of a single granule are not constant in the IBM. Bacteria grow and can be 
sheared off in the model, which mimics the natural growth of a single granule. The 
model has clear and active biomass gradients because the growth of different bacte-
rial species interacts with substrate degradation. The IBM can be one-dimensional, 
two-dimensional, or three-dimensional.

Figure 1 shows the model strategy of the IBM model. The IBM model was 
applied to model the biofilm development in a reverse osmosis module. This data 
verified the validity of the IBM model [5, 6]. In principal, any kind of microorgan-
isms can be applied in this model strategy.

The implementation of an IBM model requires a big computational workload 
because a modeling domain must be divided into numerous micro grids. Hence, the 

Figure 1. 
Algorithm steps for the biofilm model including substrate convection, substrate diffusion, substrate reaction, 
biomass growth, and biofilm detachment.
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implementation of an IBM model at a reactor scale would require huge computa-
tional workload and appear to be impossible.

3. Reactor model

3.1 Integration of hydrodynamic and biokinetics

3.1.1 Applied hydrodynamic models

The modeling of wastewater treatment at the reactor scale usually requires a 
hydrodynamic model. The hydrodynamic model tries to explain water flow in a 
bioreactor. There are two major strategies for constructing a hydrodynamic model. 
On one hand, a reactor can be treated as a connection of continuous stirred reac-
tors (CSTRs) and/or plug-flow (PF) reactors. This is termed the reactor compart-
mentalization (RC) strategy. On the other hand, computational fluid dynamics 
(CFD) can be applied instead of reactor compartmentalization. This is termed the 
CFD strategy.

3.1.1.1 RC strategy

Many different flow schemes have been applied to model hydrodynamics in 
granular sludge bed reactor. In each of these models, CSTRs are widely applied to 
model a sludge bed and a blanket, while a PF reactor is usually applied to model a 
settler in a reactor. The flow schemes do not have to fit the real physical flow condi-
tions. A flow scheme is considered acceptable if the resulting tracer concentrations 
fit the tracer concentrations measured at the outlet of reactors [7].

Figure 2 shows that four major flow schemes have been applied to model the 
hydrodynamics in granular-based reactors [8, 9, 11]. A sludge bed can be mod-
eled by using a combination of a CSTR and a dead volume. The sludge blanket 
can be modeled via the other CSTR. A bypass flow always starts from the inlet 
of a sludge bed but ends at different compartments in different flow schemes. 
The settler can be modeled as a plug-flow reactor. Other flow schemes are also 
applied but with less applications. An upflow anaerobic sludge bed (UASB) reac-
tor was treated as the connection of several CSTRs, and there was a good agree-
ment between experimental and simulated results. This shows that this variation 
is acceptable [12].

A CSTR is often applied when a blanket zone is modeled because biomass trans-
port and rising bubbles are two important factors that lead to turbulence in this 
compartment. In a settler, a degree of mixing can be expected due to movement of 
rising gas bubbles. Therefore, this zone is modeled as a dispersed plug-flow reactor. 
The choice of a plug-flow reactor or a CSTR should depend on the flow conditions 
in the sludge bed. Although many researchers use a CSTR to represent a sludge bed, 
a plug-flow reactor can be an alternative [13]. Similarly, a sludge bed in a reactor is 
often modeled as a CSTR when a high recirculation rate is applied [4, 7].

3.1.1.2 CFD strategy

If the characteristics of each sludge granule can be obtained by applying basic 
equations such as Navier-Stokes equations, then the exact hydrodynamic model-
ing of a granular sludge bed can be obtained. However, it is impossible to obtain 
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details of each sludge particle; therefore, an exact model cannot be obtained and 
is not even necessary.

The hydrodynamic modeling of a granular sludge bed by CFD requires certain 
techniques. On one hand, a sludge bed can be a liquid that is different from water. 
The sludge bed and the blanket over the sludge bed can then be modeled separately 
but simultaneously using different approaches [14]. The sludge concentration has 
a big impact on sludge hydraulic characteristics such as viscosity [15], and the con-
centration of the sludge decreases along the reactor height even at lab scales [16]. 
However, Wang et al. overlooked this difference. In contrast, the sludge bed can be 
treated as a porous bed. Influent penetrates through the porous bed and flows into 
a blanket over the porous bed [16]. The permeability and porosity of the sludge bed 
can be measured and then included in the second method that treats the sludge bed 
as a porous bed.

The CFD strategy has a few advantages over the RC strategy. First, an optimum 
flow scheme must be selected from many different flow schemes with the RC 
strategy; however, there is no need to manually divide a real reactor into virtual 
reactors while applying a CFD strategy. An RC strategy is difficult to establish with 
a very complex reactor structure, that is, internal circulation reactor. Second, the 
CFD strategy can provide many more details about water flow. Complex hydraulic 
calculations were applied to obtain head loss in a granular bed anaerobic baffled 
reactors [17]. Such reactor details can be simply extracted from a CFD model, which 
is more efficient than a complicated manual calculation. Third, the RC strategy 
cannot provide flow details for each part of a reactor; however, CFD can be applied 
to obtain the details [18–20].

Figure 2. 
Flow schemes for UASB reactors. (A) [8], (B) [9, 10], (C) [11], and (D) arrows show flow directions.
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3.1.2 Applied biokinetics

The biokinetics regarding wastewater treatment are nicely represented by a 
series of mathematical equations. Either the RC strategy or the CFD strategy is 
ready to be combined with the equations to model bioprocesses in a bioreactor.

3.1.2.1 Reactor modeling with anaerobic digestion model 1 (ADM1)

The combination of CFD and a simple bioprocess was used to model an 
expanded granular sludge bed (EGSB) reactor [21]. The biokinetics usually interact 
with each other. ADM1 is the widely applied model for modeling bioprocesses in 
anaerobic wastewater treatment. When calibrated, ADM1 can be integrated with 
hydrodynamic models to obtain an integrated model for reactor modeling. An 
integrated model can be obtained when a granular sludge bed reactor is treated as 
a connection of virtual CSTRs and PF reactors and by applying the ADM1 model 
to each of these virtual reactors. An integrated model was used to model an UASB 
reactor treating traditional Chinese medicine wastewater [22]. In the integrated 
model, values for nonsensitive parameters were adopted from public reports, while 
sensitive parameters were calibrated. Similarly, sensitive parameters were calibrated 
while modeling a UASB reactor treating wastewater from a molasses-based ethanol 
distillery [23]. In these two studies, the original form of ADM1 was maintained. 
However, the ADM1 can be extended to be more practicable. The ADM1 can be 
extended by extending the number of microbial species [7, 24] or by including new 
soluble fermentable substrates [25].

3.1.2.2 Reactor modeling with a bioparticle model

Strategies for reactor modeling based on a bioparticle model are reported. 
However, this reactor modeling strategy is case-specific, and relevant road maps 
of each strategy are not clearly stated [3, 4, 12]. By cross-checking these models, a 
general model strategy is summarized below:

i. First, a representative granular size is assumed and applied to all granules in 
the model.

ii. Second, a RC strategy is applied to divides a real reactor into a single or a 
series of virtual reactors, that is, CSTRs and/or PF reactors.

iii. Then, the number of representative granules can be obtained in each virtual 
reactor in the model by measuring the total sludge mass in a real reactor and 
calculating the mass of the representative granule.

iv. Fourth, the substrate degradation rates in each virtual reactor are obtained 
by adding substrate degradation rates of all representative granules in each 
virtual reactor.

v. Finally, the substrate degradation rates in each virtual reactor can be added 
together to obtain a reactor model that models the operation of a real granu-
lar sludge bed.

The bioparticle model applied here is a diffusion-reaction model rather than an 
IBM because the implementation of an IBM will encounter a huge computational 
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workload. In addition, this strategy can be enriched by including other sub-models 
such as sludge concentration distribution along reactor height and sludge bed 
expansion at different upflow velocities [4]. Furthermore, the size of a representa-
tive granule is manually but carefully selected while applying a bioparticle model. 
The weakness of reactor modeling with a bioparticle model is that a reactor model 
cannot be obtained when a bioparticle model cannot be obtained. A bioparticle 
model has not been convincingly established for complex substrates. Therefore, 
reactor modeling with a bioparticle model for complex substrate is still difficult.

Types Reactors and 

wastewater

No. of 

layers

Inputs Outputs Ref

BP UASB, domestic 3 TSS, VSS, COD, 

alkalinity and VFA 

concentration, T, pH in 

the influent

COD of effluent [30]

BP UASB, domestic 3 BOD, COD, NH4–N, 

TKN

Effluent BOD and 

COD

[29]

BP EGSB, denitrifying 

sulfide removal

4 NO3
−, NO2

−, S2−, pH, 

HRT

Nitrate, nitrite, 

sulfide acetate

[31]

BP UASB, denitrifying 

sulfide removal

3 Influent sulfide, nitrate 

concentration, S/N 

mole ratio, pH, and 

HRT

Sulfide, nitrate 

removal 

percentage, 

sulfate and 

nitrogen 

production 

percentage

[32]

BP UASB, 

pharmaceutical

3 Influent COD, HRT, 

pH, COD loading rate

Effluent COD [33]

BP UASB, cotton 

textile

3 HRT, influent COD, 

pH, T, alkalinity, VFA, 

dilution rate, organic 

load, TSS

COD removal [34]

NARX UASB, bagasse 

wash

4 Influent, flow rate, 

inlet and outlet COD

Biogas production 

rate

[35]

ANFIS EGSB, corn 

processing

5 Influent COD, Q , 

TKN, effluent VFA and 

bicarbonate

Effluent COD [27]

BP UASB, molasses 3 OLR, VFA of effluent, 

influent–effluent 

alkalinity and pH, T

Biogas production [36]

AMIMO UASB, molasses — OLR, TCOD removal 

rate, influent alkalinity 

and pH, effluent pH

Biogas and 

methane 

production rates

[37]

Not 

clear

UASB, molasses 3 OLR, influent and 

effluent pH, T, 

alkalinity effluent 

COD and VFA 

concentrations

Biogas and 

methane 

production rates

[38]

ANFIS, adaptive neuro-fuzzy inference system; OLR, volumetric organic loading rate; TCOD, volumetric total 
chemical oxygen demand; AMIMO, multiple inputs and multiple outputs; TSS, total suspended solids; VSS, volatile 
suspended solids; COD, chemical oxygen demand; VFA, volatile fatty acid; T, temperature; BOD, biological oxygen 
demand; TKN, total Kjeldahl nitrogen; HRT, hydraulic retention time; Q , reactor flow rate; and OLR, organic 
loading rate.

Table 1. 
Overview of neural networks applying to sludge bed reactor modeling.
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Figure 3. 
Schematic view of the structure of BP model.

3.2 Neural network modeling

Although a anaerobic digestion model can be applied, model calibration is difficult 
and laborious, while errors between model results and measured results still cannot 
be ignored [26, 27]. The nonlinear regression method shows an empirical relationship 
between effluent chemical oxygen demand (COD) and operation parameters such as 
organic load and hydraulic retention time (HRT) [28]. This empirical relation can be 
treated as a weak artificial neural network (ANN). ANN can effectively model non-
linear systems such as bioreactors for wastewater treatment. ANN is a very powerful 
computational technique for modeling complex nonlinear relationships [29].

There are a few types of ANNs. Table 1 shows that the most popular type for 
granular sludge bed modeling is back propagation (BP). The main difference between 
various types of ANNs is the network structure and the method for determining the 
weights and functions for inputs and neurons [29]. Figure 3 shows the schematic 
structure of a BP model. In the BP model structure, there is an input layer that is 
applied for inputting measured data for model training (calibration). An output layer 
is also required for model results. The selected reactor operation parameters for the 
input layer and output layer are case-specific. Generally, influent COD and effluent 
COD are usually applied in an input layer and an output layer to model a wastewater 
treatment reactor, respectively; pH is not always included. Table 1 shows the selected 
parameters for the two layers. In addition, a few layers or a hidden layer is applied to 
bridge the input layer and output layer. The number of hidden layers in an ANN model 
is usually determined automatically by a trial and error method, while a single hidden 
layer network is commonly sufficient for most of the problems [29]. Therefore, three 
layers are generally applied (Table 1). In the structure of an ANN, each layer consists 
of a few neurons that are shown as circles in Figure 3. The connections between 
neurons in each two nearby layers are usually determined while training the system 
[29]. The modeled results in the output layer are different from measured data, and the 
weights are recalculated until the model results that fit the measured results.

Table 1 shows that BP has been effectively applied to model granular sludge-
based reactors. Although these reactors treat different kinds of wastewater, the 
model results can accurately fit the measured results. However, while reactors 
are treating the same kind of wastewater, model inputs and output can vary sig-
nificantly [29, 30, 32]. As a result, different ANN models can be applied to UASB 
reactors to treat the same kind of wastewater [36–38].
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4. Challenges and discussions

A bioparticle model can explain biokinetics in a sludge granule. Although a 
bioparticle model can theoretically be applied for reactor modeling, ANN and 
models integrating reactor hydrodynamics and ADM1 are much more suitable.

A model was established for modeling ANAMMOX process in a single granule 
based on a few assumptions. However, neither the layered structure nor the 
cluster structure of a single granule can model complex substrate degradation in a 
single granule. The IBM model successfully modeled VFA degradation in a granule 
and shows a clustered structure. The IBM model is based on accurate relevant 
anaerobic kinetics and can hopefully model complex substrate degradation in a 
single granule.

The influent COD should be nicely characterized when applying the ADM1 
for reactor modeling. The ADM1 requires a detailed characterization of influent 
organic matter. Nevertheless, such a detailed characterization is generally very 
difficult [25, 26].

Furthermore, there are 86 parameters in the ADM1. While nonsensitive param-
eter values can be adopted from the literature, sensitive parameters—which vary 
significantly—must be calibrated, which is extremely time-consuming and labori-
ous [27]. In addition, the mass of microbial species in bioreactors are not measur-
able, which challenges the implementation of ADM1 [30].

Calibrating ANN models is easier than ADM1. When the measured variables 
begin to show differences in the response of ANN models, the model can be re-
trained using the newer data employed for cross-checking [27]. Numerous applica-
tions of ANNs have been successfully utilized in wastewater treatment modeling 
[38–40]. This is because of the reliable and robust characteristics of ANNs in 
capturing the nonlinear relationships between variables (multi-input and output) 
in complex systems.

The other benefit of applying an ANN model for reactor modeling is that an 
ANN model does not need well-established biokinetics. Currently, the production 
of extracellular polymeric substances (EPS) is not well understood—a modi-
fied ADM1 still cannot effectively model the production of EPS [41]. Therefore, 
the ANN can be hopefully applied to model the EPS production in an anaerobic 
sludge bed to provide better effluent quality modeling. Nevertheless, although 
an ANN model is convenient and reliable in reactor modeling, an applied ANN 
model cannot explain reactor operation failure because it always treats a bioreac-
tor as a black box.

ANNs are better and more convenient tools for reactor modeling than the 
integration of hydrodynamics and ADM1. Nevertheless, a calibrated ADM1 can 
provide more details regarding reactor operation. A calibrated ADM1 can nicely 
control reactor operation. An algorithm could be developed for ADM1 calibration 
considering the difficulty in manual ADM1 calibration and efficient calibration 
of ANN. These have been successfully achieved [42]. This makes applying ADM1 
much easier because parameter calibration is not as difficult as it used to be.

5. Conclusions

A bioparticle model is beneficial for providing insights into reactions in the 
inner space of a granule. Anaerobic ammonia oxidation processes are a simple 
process and have been modeled in an ANAMMOX granule. However, when complex 
substrates are involved, a model including relevant bioprocesses in a single granule 
has not been available. This calls for further research in this field.
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The RC and CFD strategies can both be applied to obtain a reactor hydraulic 
model that can be further integrated with a kinetic model for modeling effluent 
quality. The RC strategy manually divides a sludge bed reactor into several virtual 
reactors. The division does not have to fit the real flow conditions in the reactor. 
Alternatively, the CFD strategy can provide more details for reactor understanding 
and manipulation while being integrated with a kinetic model.

Parameter calibration for ADM1 is required before being integrated with a 
hydraulic model—this is a difficult task. Alternatively, most applied BP neural 
networks can accurately model concentrations of components in effluent, 
although the involved reactor is still a black box because the BP neural net-
work completely ignores all bioprocesses in the reactor. An algorithm could be 
programed for ADM1 calibration by applying the high calibrating capacity of 
the ANN.
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Appendices and nomenclature

ADM1 Reactor modeling with anaerobic digestion model 1
AMIMO Multiple inputs and multiple outputs
ANAMMOX An anaerobic ammonium oxidation
ANFIS Adaptive neuro-fuzzy inference system
ANN Artificial neural network
BOD Biological oxygen demand
BP Back propagation
CFD Computational fluid dynamics
COD Chemical oxygen demand
CSTRs Continuous stirred reactors
Di The diffusion coefficient of substrate I
EPS Extracellular polymeric substances
HRT Hydraulic retention time
IBM Individual-based model
OLR Volumetric organic loading rate
OLR Organic loading rate
PF Plug-flow reactors
Q Reactor flow rate
r The distance from the granule center
RC Reactor compartmentalization
ri The volumetric substrate conversion rate in the granule
Si The substrate concentration of component i in the granule
Si,sur The substrate concentration of component i in the granule surface
T Temperature
TCOD Volumetric total chemical oxygen demand
TKN Total Kjeldahl nitrogen
TSS Total suspended solids
VFA Volatile fatty acid
VSS Volatile suspended solids
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