4,167 research outputs found

    Antigen Specific CD4+ and CD8+ T Cell Recognition During Mycobacterium Tuberculosis Infection

    Get PDF
    Mycobacterium tuberculosis (Mtb) causes human tuberculosis, and more people die of it than of any other pathogen in the world. Immunodominant antigens elicit the large majority of T cells during an infection, making them logical vaccine candidates. Yet, it is still unknown whether these immunodominant antigen-specific T cells recognize Mtb-infected cells. Two immunodominant antigens, TB10.4 and Ag85b, have been incorporated into vaccine strategies. Surprisingly, mice vaccinated with TB10.4 generate TB10.4-specific memory CD8+ T cells but do not lead to additional protection compared to unvaccinated mice during TB. Ag85b-specific CD4+ T cells are also generated during vaccination, but the literature on whether these cells recognize Mtb-infected cells is also inconsistent. We demonstrate that TB10.4-specific CD8+ T cells do not recognize Mtb-infected cells. However, under the same conditions, Ag85b-specific CD4+ T cells recognize Mtb-infected macrophages and inhibit bacterial growth. In contrast, polyclonal CD4+ and CD8+ T cells from the lungs of infected mice can specifically recognize Mtb-infected macrophages, suggesting macrophages present antigens other than the immunodominant TB10.4. The antigen location may also be critical for presentation to CD8+ T cells, and live Mtb may inhibit antigen presentation of TB10.4. Finally, we propose that TB10.4 is a decoy antigen as it elicits a robust CD8+ T cell response that poorly recognizes Mtb-infected macrophages, allowing Mtb to evade host immunity

    Highly Mutable Linker Regions Regulate HIV-1 Rev Function and Stability.

    Get PDF
    HIV-1 Rev is an essential viral regulatory protein that facilitates the nuclear export of intron-containing viral mRNAs. It is organized into structured, functionally well-characterized motifs joined by less understood linker regions. Our recent competitive deep mutational scanning study confirmed many known constraints in Rev's established motifs, but also identified positions of mutational plasticity, most notably in surrounding linker regions. Here, we probe the mutational limits of these linkers by testing the activities of multiple truncation and mass substitution mutations. We find that these regions possess previously unknown structural, functional or regulatory roles, not apparent from systematic point mutational approaches. Specifically, the N- and C-termini of Rev contribute to protein stability; mutations in a turn that connects the two main helices of Rev have different effects in different contexts; and a linker region which connects the second helix of Rev to its nuclear export sequence has structural requirements for function. Thus, Rev function extends beyond its characterized motifs, and is tuned by determinants within seemingly plastic portions of its sequence. Additionally, Rev's ability to tolerate many of these massive truncations and substitutions illustrates the overall mutational and functional robustness inherent in this viral protein

    Subacute Sclerosing Panencephalitis of the Brainstem as a Clinical Entity.

    Get PDF
    Subacute sclerosing panencephalitis (SSPE) is a rare progressive neurological disorder of early adolescence caused by persistent infection of the measles virus, which remains prevalent worldwide despite an effective vaccine. SSPE is a devastating disease with a characteristic clinical course in subcortical white matter; however, atypical presentations of brainstem involvement may be seen in rare cases. This review summarizes reports to date on brainstem involvement in SSPE, including the clinical course of disease, neuroimaging presentations, and guidelines for treatment. A comprehensive literature search was performed for English-language publications with keywords "subacute sclerosing panencephalitis" and "brainstem" using the National Library of Medicine PubMed database (March 1981-September 2017). Eleven articles focusing on SSPE of the brainstem were included. Predominant brainstem involvement remains uncharacteristic of SSPE, which may lead to misdiagnosis and poor outcome. A number of case reports have demonstrated brainstem involvement associated with other intracranial lesions commonly presenting in later SSPE stages (III and IV). However, brainstem lesions can appear in all stages, independent of higher cortical structures. The varied clinical presentations complicate diagnosis from a neuroimaging perspective. SSPE of the brainstem is a rare but important clinical entity. It may present like canonical SSPE or with unique clinical features such as absence seizures and pronounced ataxia. While SSPE generally progresses to the brainstem, it can also begin with a primary focus of infection in the brainstem. Awareness of varied SSPE presentations can aid in early diagnosis as well as guide management and treatment

    Large-Scale Pairwise Sequence Alignments on a Large-Scale GPU Cluster

    Get PDF
    This paper presents design of a GPU kernel for performing pairwise sequence alignments for large-scale short sequence datasets generated by nextgeneration sequencers. This kernel principally performs batch Needleman– Wunsch global alignments. When used with its MPI-based host software, the kernel is scalable and is capable of achieving high throughput alignment when run on a CPU-GPU cluster

    National Football League Skilled and Unskilled Positions Vary in Opportunity and Yield in Return to Play After an Anterior Cruciate Ligament Injury.

    Get PDF
    BACKGROUND: Anterior cruciate ligament (ACL) injuries pose a significant risk to the careers of players in the National Football League (NFL). The relationships between draft round and position on return to play (RTP) among NFL players are not well understood, and the ability to return to preinjury performance levels remains unknown for most positions. PURPOSE: To test for differences in RTP rates and changes in performance after an ACL injury by position and draft round. We hypothesized that skilled positions would return at a lower rate compared to unskilled positions. We further hypothesized that early draft-round status would relate to a greater rate of RTP and that skilled positions and a lower draft round would correlate with decreased performance for players who return to sport. STUDY DESIGN: Case-control study; Level of evidence, 3. METHODS: Utilizing a previously established database of publicly available information regarding ACL tears among NFL players, athletes with ACL tears occurring between the 2010 and 2013 seasons were identified. Generalized linear models and Kaplan-Meier time-to-event models were used to test the study hypotheses. RESULTS: The overall RTP rate was 61.7%, with skilled players and unskilled players returning at rates of 64.1% and 60.4%, respectively (P = .74). Early draft-round players and unskilled late draft-round players had greater rates of RTP compared to skilled late draft-round players and both unskilled and skilled undrafted free agents (UDFAs). Skilled early draft-round players constituted the only cohort that played significantly fewer games after an injury. Unskilled UDFAs constituted the only cohort to show a significant increase in the number of games started and ratio of games started to games played, starting more games in which they played, after an injury. CONCLUSION: Early draft-round and unskilled players were more likely to return compared to their later draft-round and skilled peers. Skilled early draft-round players, who displayed relatively high rates of RTP, constituted the only cohort to show a decline in performance. Unskilled UDFAs, who exhibited relatively low rates of RTP, constituted the only cohort to show an increase in performance. The significant effect of draft round and position type on RTP may be caused by a combination of differences in talent levels and in opportunities given to returning to play
    • …
    corecore