
Large-Scale Pairwise
Sequence Alignments on
a Large-Scale GPU Cluster
Ibrahim Savran, Yang Gao, and Jason D. Bakos

University of South Carolina

h NEXT-GENERATION SEQUENCING (NGS) tech-

nologies use parallel sequencing techniques to

generate a large set of short DNA fragments. For ex-

ample, the Roche 454 generates tens of thousands of

400–800 base pair sequences, while the Illumina

MiSeq/HiSeq generates millions or billions of 150

base pair sequences. Because of this, NGS pipelines

generally must rely on advanced computational

tools to extract useful knowledge from the target

genome or metagenome. One important class of

analysis methods relies on clustering the DNA frag-

ments based on a similarity metric. Although individ-

ual alignments are relatively inexpensive, computing

pairwise distances requires Oðn2Þ alignments, be-

coming prohibitively expensive for large data sets.

In this paper, we describe a graphics processing

unit (GPU) kernel that performs batch Needleman–

Wunsch (N–W) global alignments. For each align-

ment, the kernel returns an alignment score divided

by the total alignment

length. When used with its

MPI-based host software,

the kernel is scalable and

is capable of achieving

high-throughput alignment

when run on a CPU–GPU

cluster. The host software

includes a load balancing

technique for data sets hav-

ing sequences of nonuni-

form lengths.

We evaluate our kernel using the Stampede

supercomputer at the Texas Advanced Computing

Center (Austin, TX, USA). By executing our kernel on

32 of Stampede’s NVIDIA K20 GPUs, we were able

to align 256 K (218) 400 base pair sequences, re-

quiring over 34 billion individual alignments using

79 872 GPU cores.

GPU Computing
Since the introduction of the NVIDIA compute

unified device architecture (CUDA) in 2008, GPU

computing has become widely adopted by the

scientific computing community. There are now

several large-scale supercomputer installations

equipped with GPU coprocessors, including Titan,

currently ranked number one on the Top 500 list

containing 18 688 NVIDIA K20� GPUs, Stampede,

ranked number seven containing 128 NVIDIA K20

GPUs, and Tianhe-1A, currently ranked number

eight containing 7168 NVIDIA M2050 GPUs [1].

Table 1 summarizes the differences in micro-

architectural philosophy between NVIDIA GPUs and

Intel Xeon CPUs. As compared to CPUs, GPUs devote

Editor’s notes:
This paper presents design of a GPU kernel for performing pairwise sequence
alignments for large-scale short sequence datasets generated by next-
generation sequencers. This kernel principally performs batch Needleman–
Wunsch global alignments. When used with its MPI-based host software, the
kernel is scalable and is capable of achieving high throughput alignment when
run on a CPU-GPU cluster.

VPartha Pratim Pande, Washington State University

2168-2356/14 B 2013 IEEEJanuary/February 2014 Copublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTC 51

Digital Object Identifier 10.1109/MDAT.2013.2290116

Date of publication: 11 November 2013; date of current version:

20 February 2014.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/24061519?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

a larger portion of their real estate to functional units

but have substantially less onchip cache. GPUs

exploit data-level parallelism by interleaving instruc-

tions across a large set of active threads, while CPUs

exploit instruction-level parallelism by maximizing

the number of in-flight instructions from each

thread. GPUs use smaller, nonexpandable DRAMs

but have substantially higher memory bandwidth

than CPUs.

Previous work
Knowledge of DNA sequences has become indis-

pensable for biological research and in numerous

applied fields such as diagnostic medicine, biotech-

nology, and biological systematics. The high de-

mand for low-cost sequencing has driven the

development of NGS technologies that parallelize

the sequencing process, producing thousands or

millions of short sequences at once.

One of the first such high-throughput sequencing

technologies was developed by Roche in their

454 pyrosequencer, which provided a means of

sequencing tens of thousands of short DNA se-

quences quickly and efficiently [2]–[8]. However,

this technology brought new

problems. The 454 data are

prone to errors, leading to the

realization that computational

methods would be necessary to

‘‘denoise’’ the data.

One such tool, Amplicon-

Noise, is designed for metage-

nomic data sets and relies on

grouping the input sequences

into clusters that each repre-

sents oversampling of a single

taxonomic unit [9]. The clus-

tering is based on the pair-

wise distances given by the

Needleman–Wunsch [10] glo-

bal sequence alignment. The

alignment used in Amplicon-

Noise differs from traditional

sequence alignment in that it

requires the use of double-

precision floating-point ope-

rations when performing

alignment score calculation.

AmpliconNoise is used to de-

noise the 454 data in order to

reduce the overestimation of the number of unique

taxonomic units implied by the data, a common

problem in metagenomic sequencing [11]–[19].

Unlike other GPU-based sequence alignment

kernels such as CUDASW++ that employ a perfor-

mance optimization in which the move matrix is

discarded, in AmpliconNoise, this movement

matrix must be retained in order to calculate

the normalized alignment distance required for

AmpliconNoise’s final distance calculation.

There are several examples in the literature that

describe GPU accelerated local and global se-

quence alignment algorithms such as Needleman–

Wunsch, Smith–Waterman [20], and BLAST [21].

However, the emphasis of these efforts is on local

sequence alignment for genomic database search,

in which a relatively short sequence is aligned

against a very long database sequence.

The Needleman–Wunsch alignment method

used in AmpliconNoise is inherently more expen-

sive than BLAST. As such, one obvious method for

improving the performance of AmpliconNoise is

to replace its alignment method with BLAST. This

is especially tempting since BLAST has been

Table 1 Comparison of Intel’s largest scale CPU with GPUs used in our tests.

IEEE Design & Test52

Hardware Acceleration in Computational Biology

parallelized on both GPUs (as mentioned above)

but also on traditional distributed memory parallel

computers [22]. However, our objective is to

achieve GPU acceleration of AmpliconNoise while

guaranteeing that the results match those from our

software baseline. The authors of AmpliconNoise

emphasize accuracy and explicitly chose not to

use the less expensive but less sensitive BLAST

method because it would compromise the quality

of their results. As such, we feel that comparing

BLAST to a GPU-accelerated Needleman–Wunsch

(N–W) is not a fair comparison.

pGraph is a load balancing method that is spe-

cifically designed to address the problem of higher

variance in the lengths of protein sequences that is

not typical of DNA sequences [23]. pGraph also

includes a feature that reduces the number of re-

quired sequence comparisons by subjecting each

pair to a similarity test before adding that

alignment to the work queue. The similarity test is

based on checking for long exact matches in the

proposed sequence pair, which is implemented

using a suffix tree-based filter. While such a filter

would benefit our approach, it would violate

AmpliconNoise’s expectation that a distance be

returned for all pairs. More importantly, although

using such a filter would allow us to process larger

data sets, it would not affect our achieved

alignment throughput, which is our target perfor-

mance metric.

Manavski provided the seminal work in accel-

erating Smith–Waterman using CUDA [24]. This

early work has been improved upon in the de-

velopment of more recent and more popular

libraries such as CUDASW++ [25]. More recently,

Razmyslovich has developed an OpenCL imple-

mentation of Smith–Waterman [26] that achieves

three times the performance of CUDASW++ 2.0 in

some situations [27].

To the best of our knowledge, the parallel im-

plementation of Needleman–Wunsch that we used

is the only that is sufficiently memory efficient to

make it feasible to achieve our target scales, in terms

of number of alignments. In other words, all the

implementations from the literature, including GPU,

FPGA, and MPI-based implementations, either do

not provide an alignment length (only the score) or

they perform a full traceback which requires large

memory which makes them not amenable for

massively large alignment workloads.

Needleman–Wunsch global alignment
The Needleman–Wunsch algorithm is a compari-

son operation between two sequences A and B

given an implicit assumption that, when the se-

quences are not exactly equal, their similarity can

be characterized as the number of edit operations

that would transform one sequence into the other.

Possible edit operations are character substitutions

and substring insertions and deletions. The objec-

tive of an alignment is to align the matching or

substituted characters that are common in both

sequences and add blank spacesVor gapsVin one

sequence that correspond to characters in the other

sequence that are not common to both. The dis-

tance ‘‘penalty’’ that is contributed by each edit

operation can be specified using a substitution table

and a gap penalty.

The algorithm works by constructing two matri-

ces, where each matrix has kþ 1 rows and l þ 1

columns, where k and l are the lengths of the two

strings to be compared. The score matrix records

the alignment score for every possible alignment

between the two matrices, while the movement

matrix provides a path through the matrix, from the

bottom-right cell to the upper-left cell, that repre-

sents the alignment configuration that yields the

minimal alignment score. In this path, a move to

the left or up represents a gap that is inserted into

the first or second sequence, while a move

diagonally represents a matching or substituted

character that is common to both sequences.

Each cell of the score and movement matrix is

computed as shown in

Hði; jÞ¼min

H i � 1; j � 1Þ þ SðA½i�;B½j�ð Þ

Hði � 1; jÞ � d

Hði; j � 1Þ � d

8>><
>>:

(1)

Mði; jÞ¼

diag if Hði; jÞ¼H i�1; j�1Þ þ SðA½i�;B½j�ð Þ

left if Hði; jÞ¼Hði�1; jÞ�d

up if Hði; jÞ¼Hði; j�1Þ�d:

8>>><
>>>:

(2)

In these equations, Hði; jÞ is the score matrix,

Sða; bÞ is the substitution penalty resulting from

comparing element A½i� and element B½j�, and d is

the gap penalty. S and d are specific to the se-

quencer technology and are represented as

January/February 2014 53

floating-point values. In order to differentiate

minor variations between flows, the authors of

AmpliconNoise choose to use double-precision

floating point to perform the comparisons, score

accumulation, and score normalization.

Figure 1 shows an example N–W alignment. In

this example, sequence 1 undergoes three edits to

produce sequence 2. These sequences are then

aligned. The final alignment score is taken from the

lower right cell of the resultant score matrix (not

shown). The move matrix is depicted in the figure

and shows how characters present in sequence 1

but not in sequence 2 produce moves to the left,

characters present in sequence 2 but not in se-

quence 1 produce moves up, and characters that

match or are substituted produce a move diagonally.

In this example, the final score is divided by the

alignment length of 13 to compute the normalized

score.

Space optimization
The generation of the two

matrices represents a major chal-

lenge when performing large-

scale batch alignments, as the

memory requirement will often

become a constraint well before

the execution time. In our orig-

inal kernel implementation, we

store only the last row of the

score matrix in GPU memory

during the alignment procedure

[28]. However, since Amplicon-

Noise must keep track of the total

movement distance in order to

use it to divide the alignment

score, we originally stored the

entire movement matrix in mem-

ory GPU. This was prohibitively

expensive both in terms of mem-

ory space and time for perform-

ing the ‘‘traceback’’ operation on

the movement matrix to deter-

mine the alignment length.

In our improved kernel, we

store only one row of the move-

ment matrix in GPU memory. In

order to avoid storing the entire

movement matrix, the kernel

maintains only a single vector

V , where V ½i� represents the ac-

cumulated number of minimal alignment moves

beginning from the current row and from column i.

In addition to this vector, we establish two registers

ndist and ldist to hold intermediate values. ndist

holds the newly computed number of moves, and

ldist holds the previous number of moves from the

left cell.

We later discovered that this technique is actually

standard technique in dynamic programming despite

the fact that it was not used in AmpliconNoise nor was

it used in any of the GPU aligners in the literature. We

assume this is because it is a relatively obscure

technique as it is only applicable in situations where

the alignment length is needed but not the recovered

alignment itself, which may be a rare requirement

(somewhat unique to AmpliconNoise).

Figure 2 depicts this operation. If the current

move is determined to be diagonal, then we set

N ¼ V ½i � 1� þ 1; if the current move is determined

Figure 1. Example N–W alignment between two sequences.

IEEE Design & Test54

Hardware Acceleration in Computational Biology

to be left, then we set N ¼ Lþ 1;

and if the current move is de-

termined to be up, then we set

N ¼ V ½i� þ 1. After this, we set

V ½i � 1� ¼ L, L ¼ N , and incre-

ment i.

Arithmetic intensity
Algorithm 1 shows the ver-

sion of the Needleman–Wunsch

algorithm used in our kernel.

Algorithm 1: Single-Vector

Needleman–Wunsch Alignment

Input: A;B; S

1 for i ¼ 1! lengthðAÞ do
2 ldist 0

3 leftScore i � gap penalty

4 for j ¼ 1! lengthðBÞ do
5 currentScore min ð
6 Scorej�1 þ SðAi ;BjÞ,
7 leftScore�d,
8 Scorej � dÞ
9 if currentScore ¼ Scorej�1 þ SðAi ;BjÞ then
10 ndist Vj�1 þ 1

11 else if currentScore ¼ leftScore� d then

12 ndist ldistþ 1

13 else

14 ndist Vj þ 1

15 end if

16 Scorej�1 leftScore

17 leftScore currentScore

18 V j�1 ldist

19 ldist ndist

20 end for

21 Scorej�1 leftScore

22 V j�1 ldist

23 end for

24 return ScorelengthðBÞ=V lengthðBÞ

The innermost loop performs all the operations re-

quired to calculate a single cell of both the score and

the movement matrices. This requires nine double-

precision floating-point operations when computing

each cell. The algorithm performs the following

memory operations when computing each cell.

h Line 6: load 1 B for Bj (recall that Aj is stored in

shared memory).

h Lines 6, 8: 16 B loaded from the double-precision

score array.

h Lines 10, 12, and 14: only one of these lines is

executed, but on two of the lines 4 B are read

from the V (distance) array. With our random in-

put data, each line will be executed with equal

probability. However, in the most common case,

each warp (group of 32 threads) will include at

least one thread that executes line 10 and one

thread that executes line 14. This will cause warp

serialization, subjecting all the threads in the

warp to the latency required incurred by all of

three branches. Thus, we assume that 8 B will

always be read.

h Line 16: 8 B written to the double-precision score

array.

h Line 18: 4 B written to the V (distance) array.

In total, each cell update requires accessing 37 B

on average. Since our test sequences are of length

400, each alignment requires 4002 ¼ 160 000 cell

updates.

Note that when updating the score vector Score,

writes to this vector must be delayed until after the

previous value is no longer needed. leftScore is used

as a temporary holding place for this updated score

before it can be written back to the vector. current-

Score is a temporary holding place for the current

score, which is shifted into leftScore for the next

iteration. In other words, leftScore is the updated

score to the left of the current score and currentScore

is the new value of the current score, but these

Figure 2. Example showing the movement matrix optimization.

January/February 2014 55

values must be maintained in temporary variables

since currentScore depends on the scores above and

to the left from the previous iteration. The alignment

distance vector V is treated the same way.

If we begin with the assumption that our kernel is

compute bound, and we consider that each of the

13 streaming multiprocessor cores (SMXs) on the

NVIDIA K20 can dispatch 128 double-precision

operations per cycle, we should be able to achieve

a throughput of 1/160 000 alignment/cells �
1/9 cell/ops � (13 � 128) ops/cycle � 706e6 cycles/

second ¼ 815 820 alignments/second per GPU.

On the other hand, given our kernel’s arithmetic

intensity of 37 B per cell, if we assume that the

kernel is memory bound, we expect to be able to

compute 1/37 cell/B � 1/160 000 alignment/cells �
208 GB/s ¼ 37 726 alignments/second per GPU.

Since the second throughput is lower, we conclude

that the kernel is actually memory bound, and that

this kernel utilizes only 37 726/815 820 ¼ 4.6% of

the GPU’s computational capability.

In order to compute the pairwise distances

among sequences, an input data set with n se-

quences will perform a Needleman–Wunsch align-

ment ðn2� nÞ=2 times to construct matrices. For a

data set of 218 sequences, there are approximately 34

billion required alignments, which would ideally

require 474 min on 32 K20 GPUs.

Kernel implementation
In general, performance tuning GPU kernel code

requires that the programmer apply code transfor-

mations to maximize the utilization of both GPU

resources and memory bandwidth, and a key ob-

jective for achieving both these goals is to maximize

the number of active threads.

As shown in Figure 3, existing Smith–Waterman

and Needleman–Wunsch alignment kernels (includ-

ing CUDASW++) use a strategy where they employ

multiple threads to generate each diagonal of a

single score and movement matrix. This is possible

since cells along the diagonal can be computed in-

dependently. This is an effective strategy for kernels

that perform one alignment at a time, since many

threads can be utilized during the alignment.

There are two drawbacks to this approach. When

assigning one thread per cell in the matrix diagonal,

in order to access memory in a coalesced way, the

matrices must be organized in a diagonal-major

order as opposed to row- or column-major order.

Organizing the matrix in this way adds overhead for

translating row and column pairs into memory ad-

dresses. In addition, there are several ‘‘corner cases’’

that must be considered that require additional con-

ditional execution paths (i.e., if-statements) which

cause branch divergences among the threads and

degrading performance. Both of these issues also

lead to higher register usage per

thread that limits the kernel’s

occupancy, or the number of

threads that can execute simul-

taneously on each of the GPU’s

processor cores.

As shown in Figure 4, since

AmpliconNoise performs a

large number of short align-

ments, we observe that a more

effective strategy is to assign

one thread to each alignment

operation and to perform a

large set of alignments in paral-

lel. As compared to the more

traditional approach of comput-

ing the score matrix diagonals

in parallel, this technique leads

to fewer divergent branches

and allows for lower register

usage allowing more threads to

be invoked.

Figure 3. Two data parallel strategies for constructing the N–W matrices:
(a) method used in implementations that seek to speed up single
alignments, and (b) method used in our approach, which seeks to
speed up multiple alignments.

IEEE Design & Test56

Hardware Acceleration in Computational Biology

CUDASW++, unlike Razmyslovich’s implementa-

tion, provides an option for performing multiple

alignments in parallel on the GPU but does not

provide traceback capability for determining the

length of the alignment. Razmyslovich’s work, on the

other hand, does provide an option for performing

traceback, but when enabled, the overall perfor-

mance is reduced by a factor of 10, as compared to

when traceback is not enabled.

Task parallelization
In AmpliconNoise, the Needleman–Wunsch

kernel is launched for sequence to sequence

alignment. In order to take advantage of the GPU’s

parallel computing ability, however, we divide the

sequences into groups where each group has a pre-

defined number of sequences. Instead of computing

the distance one by one, we launch a thread grid to

compute all the possible distances between the

sequences from each pair of groups.

A single thread performs the construction of one

score and move matrix. In order to achieve coalesced

memory access of a block of threads, we interleave

each group of score and movement matrices, where

the group size is 32 to match the warp size. As such,

the addresses from 0 to 31 store the first values of 32

matrices; the next block of 32 addresses store the

second values of each of 32 matrices; and so forth.

Shared memory optimizations
Using shared memory is a common optimiza-

tion for increasing the performance of memory

bandwidth-bound kernels. In our kernel, we use

shared memory to store the substitution matrix in

order to lower the number of global loads and

stores. In addition, since one thread block is

aligning a group of sequences (Bj � BjþGroup Size to

sequence Ai), we store Ai in the shared memory to

reduce the bandwidth usage by the block.

Multi-GPU implementation and
performance overhead

Since each individual alignment is independent,

the host can assign each GPU a workload consisting

of a subset of the alignments in order to parallelize

the pairwise alignments across multiple GPUs. In our

multi-GPU implementation, we divide the workload

across each GPU using MPI.

When the GPU kernel is invoked, it performs pair-

wise comparisons between blocks of 32 sequences

each. Since each thread performs one alignment, this

requires the instantiation of 322 ¼ 1024 threads on the

GPU. Each time the kernel in invoked, it can perform

up to 128 of these pairwise block comparisons.

Each cluster node receives a set of work units.

Each work unit is identified as a starting sequence

block Ci and requires the pairwise alignment be-

tween blocks Ci and Ci�1, Ci and Ci�2, Ci and

Ci�3; . . . ;Ci and C0. This requires Ci sequence block

alignments and, therefore, ceiling (Ci/128) kernel

invocations. In other words, each GPU invokes the

kernel multiple times but the number of invocations

depends on which sequence block is being com-

puted. The number of invocations per GPU can grow

quite large with large data sets (thousands of

invocations per GPU). This causes the CUDA run-

time to add overhead to the execution time.

Single GPU performance results
Each node in the TACC Stampede cluster con-

tains dual 2.7-GHz eight-core Intel Xeon E5-2680

CPUs that can all execute 16 MPI processes. Our

first set of experimental results seeks to determine

Figure 4. Group assignment and memory arrangement.
The ticked cell means we should do the distance
computation between the two groups, and for dash we
do nothing. The distances between the flows within
each group are also computed.

January/February 2014 57

how many of these cluster nodes are equivalent,

in performance, to a single NVIDIA GTX680 GPU

for performing a set of pairwise alignments.

Table 2 shows the performance results from align-

ing, using Stampede’s CPUs only, 8K and 6K sequences

on 2–64 nodes, and on all 16 processors on each

node. Our CPU implementation uses the same opti-

mized algorithm as described in Algorithm 1, which

itself is approximately six times faster than the base

implementation in AmpliconNoise due to the move-

ment vector optimization. We used the base MPI im-

plementation in AmpliconNoise which distributes the

workload uniformly across all nodes. Note that the

speedup is nearly ideal as we scale to larger numbers

of processors, except for the case when scaling from

128 to 256 processors for the 8K data set and from 64

to 128 processors in the 6K data set. We assume that

this is due to communication overheads related to

the placement of the MPI processes on the cluster.

We also ran the same data sets using a single

NVIDIA GTX 680 GPU (a $500 gaming card). For

both data sets, the GPU is approximately equivalent

to 64 processors on TACC Stampede.

The thermal design power (TDP) for the NVIDIA

GTX 680 is 195 W, while the TDP for one of

Stampede’s 8-core Intel Xeon E5-4650 CPUs is

130 W. This gives an approximate power consump-

tion of 8 � 130 ¼ 1040 W for the CPUs versus 195 W

for the GPU, which makes the GPU approximately

five times more power efficient.

Multi-GPU performance results
Stampede has 128 nodes that all contain one

NVIDIA K20 GPU. For our multi-GPU experiments,

we scaled our GPU kernel up to 32 NVIDIA K20s on

Stampede using data sets that ranged from 16K to

256K sequences. Our XSEDE allocation for Stam-

pede limits our GPU runs to 12 h, which in turn limits

the maximum data set size that we could test. For

this test, Stampede’s CPUs remained idle while the

GPUs executed the alignment kernel.

As shown in Table 3, for each test, we calculated

the ideal performance using the memory bandwidth

bound derived in the previous section. We calcu-

lated the parallelization overhead as the difference

between the ideal and actual execution time

Table 2 CPU versus single GPU execution time

in seconds.

Table 3 Multi-GPU runtimes in minutes.

IEEE Design & Test58

Hardware Acceleration in Computational Biology

divided by the ideal execution

time. In this case, the paralleli-

zation overhead mostly consists

of file I/O for the results. The

overheads were consistent,

from 22% to 25%, and in general

were smaller for larger jobs.

GPU load balancing
Our main experimental re-

sults assume a fixed sequence

size of 400 bp, which is typical of data sets gene-

rated in metagenomic shotgun sequencing. Be-

cause of the uniformity of the sequence length and

thus the alignment workload, there is little work

imbalance when using a uniform workload distri-

bution mechanism.

In order to characterize the load imbalance that

occurs when the sequences have varying length, we

have added a new set of results that measure the

GPU utilization for synthetically generated data sets

of 16K sequences where the length of each se-

quence is chosen from a normal distribution having

mean 400 while scaling the standard deviation.

Our results show that the utilization does scale

with the variance in the sequence length. To address

this problem, we developed an improved workload

distribution method. In our improved method, we

consider each group of 32 consecutive sequences as

a group, which corresponds to the number of pa-

rallel alignments performed on our GPU kernel, and

we assign a block of groups to each GPU based on

the estimated cumulative execution time of the

groups, as opposed to a naive method where an

equal number of alignments is assigned to each GPU.

We estimate the execution time of each group of

sequences by observing that the time required for

each block is determined by its longest sequence,

due to the implicit barrier synchronization after

each kernel invocation. Also, each block is aligned

against all blocks having an index less than its own

index, so this is incorporated into the estimate.

For each group i, we estimate the execution time

Ci using

Ci ¼

m0

�
; if i ¼ 0

mi

�
� 1

�
�
Xi�1
0

mj ; otherwise.

8>><
>>:

(3)

In (3), mj is the maximum sequence length

within group j. We divide the cost of each group by

the mean � of the sequence length (in this case 400)

in order to prevent overflow.

In our improved workload distribution method,

we first use (3) to estimate the execution time of

each group, and then sort the groups according to

this value. After this, we assign the sorted groups to

the GPUs in a round-robin manner.

As shown in Table 4, our improved workload

distribution method consistently achieves 97% or

higher utilization.

IN THIS ARTICLE, we describe our implementation

of the normalized floating-point Needleman–

Wunsch kernel used in AmpliconNoise, a tool for

denoising metagenomic sequences obtained from

NGS technology. We compared the performance of a

single gaming GPU versus that of a large-scale CPU

cluster, and then scaled the kernel to a large set of

computing GPUs. We believe that our final result,

aligning 256K sequences, is a new record in pairwise

alignments, and demonstrates that GPU clusters can

be a useful tool for NGS data analysis. h

Acknowledgment
This work was supported by the National

Science Foundation under Grant 0844951. This

work used the Extreme Science and Engineering

Discovery Environment (XSEDE), which was sup-

ported by the National Science Foundation under

Grant OCI-1053575.

h References
[1] Top 500 List. [Online]. Available: http://www.

top500.org.

[2] S. Kumar, T. Carlsen, B. Mevik, P. Enger, R. Blaalid,

K. Shalchian-Tabrizi, and H. Kauserud, ‘‘CLOTU:

Table 4 GPU utilization for nonuniform data sets (16K sequences).

January/February 2014 59

An online pipeline for processing and clustering of

454 amplicon reads into OTUs followed by taxonomic

annotation,’’ BMC Bioinf., vol. 12, no. 182, 2011,

DOI: 10.1186/1471-2105-12-182.

[3] J. R. Cole, Q. Wang, E. Cardenas, J. Fish,

B. Chai, R. J. Farris, A. S. Kulam-Syed-Mohideen,

D. M. McGarrell, T. Marsh, G. M. Garrity, and

J. M. Tiedje, ‘‘The ribosomal database project:

Improved alignments and new tools for rRNA

analysis,’’ Nucleic Acids Res., vol. 37, no. Suppl 1,

pp. D141–D145, 2009.

[4] H. Amber, R. Sean, M. Timothy, L. Bertram, and

E. Jonathan, ‘‘Introducing WATERS: A workflow

for the alignment, taxonomy, ecology of ribosomal

sequences,’’ BMC Bioinf., vol. 11, no. 317, 2010,

DOI: 10.1186/1471-2105-11-317.

[5] P. Ram, N. Viola, and S. Christian, ‘‘CANGS:

A user-friendly utility for processing and analyzing

454 GS-FLX data in biodiversity studies,’’ BMC

Res. Notes, vol. 3, no. 3, 2010, DOI: 10.1186/

1756-0500-3-3.

[6] F. Juan, L. Antonio, F. No, C. Francisco, P. Guillermo,

and C. Gonzalo, ‘‘SeqTrim: A high-throughput

pipeline for preprocessing any type of sequence

read,’’ BMC Bioinf., vol. 11, no. 38, 2010,

DOI: 10.1186/1471-2105-11-38.

[7] J. G. Caporaso, J. Kuczynski, J. Stombaugh,

K. Bittinger, F. D. Bushman, E. K. Costello,

N. Fierer, A. Gonzalez Peña, J. K. Goodrich,

J. I. Gordon, G. A. Huttley, S. T. Kelley, D. Knights,

J. E. Koenig, R. E. Ley, C. A. Lozupone, D. McDonald,

B. D. Muegge, M. Pirrung, J. Reeder, J. R. Sevinsky,

P. J. Turnbaugh, W. A. Walters, J. Widmann,

T. Yatsunenko, J. Zaneveld, and R. Knight, ‘‘QIIME

allows analysis of high-throughput community

sequencing data,’’ Nature Methods, vol. 7, no. 5,

pp. 335–336, 2010.

[8] C. Quince, A. Lanzn, T. Curtis, R. Davenport,

N. Hall, I. Head, L. Read, and W. Sloan,

‘‘Accurate determination of microbial diversity

from 454 pyrosequencing data,’’ Nature Methods

vol. 6, no. 9, pp. 639–641, 2009.

[9] C. Quince, A. Lanzen, R. Davenport, and

P. Turnbaugh, ‘‘Removing noise from pyrosequenced

amplicons,’’ BMC Bioinf., vol. 12, no. 38, 2011,

DOI: 10.1186/1471-2105-12-38.

[10] S. Needleman and C. Wunsch, ‘‘A general method

applicable to the search for similarities in the amino

acid sequence of two proteins,’’ J. Molecular Biol.,

vol. 48, no. 3, pp. 443–453, 1970.

[11] E. Hall, K. Besemer, L. Kohl, C. Preiler, K. Riedel,

T. Schneider, W. Wanek, and T. Battin, ‘‘Effects of

resource chemistry on the composition and function

of stream hyporheic biofilms,’’ Front. Microbiol., vol. 3,

no. 35, 2012, DOI: 10.3389/fmicb.2012.00035.

[12] L. Tranvik and T. Battin, ‘‘Unraveling assembly of

stream biofilm communities,’’ ISME J., vol. 6, no. 8,

pp. 1459–1468, 2012.

[13] P. Kumar, M. Brooker, S. Dowd, and T. Camerlengo,

‘‘Target region selection is a critical determinant

of community fingerprints generated by

16S pyrosequencing,’’ PloS One, vol. 6, no. 6, 2011,

e20956.

[14] A. Lanzen, S. Jørgensen, M. Bengtsson, I. Jonassen,

L. Øvreåas, and T. Urich, ‘‘Exploring the composition

and diversity of microbial communities at the

Jan Mayen hydrothermal vent field using RNA

and DNA,’’ FEMS Microbiol. Ecol., vol. 77, no. 3,

pp. 577–589, 2011.

[15] R. H. Nilsson, L. Tedersoo, B. D. Lindahl, R. Kjøller,

T. Carlsen, C. Quince, K. Abarenkov, T. Pennanen,

J. Stenlid, T. Bruns, K. H. Larsson, U. Kojljalg, and

H. Kauserud, ‘‘Towards standardization of the

description and publication of next-generation

sequencing datasets of fungal communities,’’ New

Phytologist, vol. 191, no. 2, pp. 314–318, 2011.

[16] G. Wang, S. Sherrill-Mix, K. Chang, C. Quince, and

F. Bushman, ‘‘Hepatitis C virus transmission

bottlenecks analyzed by deep sequencing,’’ J. Virol.,

vol. 84, no. 12, pp. 6218–6228, 2010.

[17] D. Knights, E. Costello, and R. Knight, ‘‘Supervised

classification of human microbiota,’’ FEMS Microbiol.

Rev., vol. 35, no. 2, pp. 343–359, 2011.

[18] J. Bahl, M. C. Y. Lau, G. J. D. Smith, D. Vijaykrishna,

S. C. Cary, D. C. Lacap, C. K. Lee, R. Thane Papke,

K. A. Warren-Rhodes, F. K. Y. Wong, C. P. McKay, and

S. B. Pointing, ‘‘Ancient origins determine global

biogeography of hot and cold desert cyanobacteria,’’

Nature Commun., vol. 2, 2011, DOI: 10.1038/

ncomms1167.

[19] A. Gobet, C. Quince, and A. Ramette, ‘‘Multivariate

cutoff level analysis (MultiCoLA) of large community

data sets,’’ Nucleic Acids Res., vol. 38, no. 15, 2010,

DOI: 10.1093/nar/gkq545.

[20] T. F. Smith and M. S. Waterman, ‘‘Identification

of common molecular subsequences,’’ J. Mol. Biol

vol. 147, no. 1, pp. 195–197, 1981.

[21] S. Altschul, W. Gish, W. Miller, E. Myers, and

D. Lipman, ‘‘Basic local alignment search tool,’’

J. Mol. Biol., vol. 215, no. 3, pp. 403–410, 1990.

IEEE Design & Test60

Hardware Acceleration in Computational Biology

[22] C. Oehmen and J. Nieplocha, ‘‘ScalaBLAST:

A scalable implementation of BLAST for

high-performance data-intensive bioinformatics

analysis,’’ IEEE Trans. Parallel Distrib. Syst.,

vol. 17, no. 8, pp. 740–749, Aug. 2006.

[23] C. Wu, A. Kalyanaraman, and W. R. Cannon, ‘‘pGraph:

Efficient parallel construction of large-scale protein

sequence homology graphs,’’ IEEE Trans. Parallel

Distrib. Syst., vol. 23, no. 10, pp. 1923–1933,

Oct. 2012.

[24] S. A. Manavski and G. Valle, ‘‘CUDA compatible

GPU cards as efficient hardware accelerators

for Smith-Waterman sequence alignment,’’ BMC

Bioinf., vol. 9, no. Suppl 2, 2008, DOI: 10.1186/

1471-2105-9-S2-S10.

[25] Y. Liu, D. L. Maskell, and B. Schmidt, ‘‘CUDASW++:

Optimizing Smith-Waterman sequence database

searches for CUDA enabled graphics processing

units,’’ BMC Res. Notes, vol. 2, no. 73, 2009,

DOI: 10.1186/1756-0500-2-73.

[26] D. Razmyslovich, G. Marcus, M. Gipp, M. Zapatka,

and A. Szillus, ‘‘Implementation of Smith-Waterman

algorithm in OpenCL for GPUs,’’ in Proc. 9th Int.

Workshop Parallel Distrib. Methods Verif./2nd Int.

Workshop High Performance Comput. Syst. Biol.,

2010, pp. 48–56.

[27] Y. Liu, B. Schmidt, and D. Maskell, ‘‘CUDASW++ 2.0:

Enhanced Smith-Waterman protein database search

on CUDAenabled GPUs based on SIMT and virtualized

SIMD abstractions,’’ BMC Res. Notes, vol. 3, no. 93,

2010, DOI: 10.1186/1756-0500-3-93.

[28] Y. Gao and J. D. Bakos, ‘‘GPU acceleration of

pyrosequencing noise removal,’’ in Proc. Symp.

Appl. Accelerators High Performance Comput.,

Jul. 10–11, 2012, pp. 94–101.

Ibrahim Savran is currently working toward a
PhD in computer science and engineering at the
University of South Carolina, Columbia, SC, USA,
with focus on high-performance reconfigurable com-
puting, under the guidance of Dr. J. Bakos. His re-
search focuses on large-scale pairwise sequence
alignment. He has a BS and an MS in computer
engineering from Selçuk University, Konya, Turkey
(2003 and 2006, respectively). He is a member of the
Association for Computing Machinery (ACM).

Yang Gao is currently working toward a PhD in
computer science and engineering at the University
of South Carolina, Columbia, SC, USA. He is now

working in Dr. Bakos’ lab and endeavors to explore
computing performance and power efficiency of the
nontraditional high-performance computing plat-
forms such as GPU, DSP, as well as mobile pro-
cessors for implementing scientific application
kernels. He is also interested in developing a new
technique or programming models to facilitate the
algorithm and application development on these
platforms. He has a BS in electrical engineering from
Fuzhou University, Fuzhou, China (2004) and an MS
in electrical engineering from the Shanghai Jiao
Tong University, Shanghai, China (2007).

Jason D. Bakos is an Associate Professor of
Computer Science and Engineering at the University
of South Carolina, Columbia, SC, USA. His research
focuses on mapping data- and compute-intensive
applications to novel high-performance and embed-
ded platforms. His group is known for their work in
mapping applications in computational phyloge-
netics, large-scale pairwise sequence alignment,
frequent itemset mining, and sparse linear algebra,
and for their close collaboration with FPGA-based
computer manufacturers Convey Computer Corpo-
ration, GiDEL, and Annapolis Micro Systems as well
as GPU and DSP vendors NVIDIA, Texas Instru-
ments, and Advantech. He has a BS in computer
science from Youngstown State University, Youngs-
town, OH, USA (1999) and a PhD in computer
science from the University of Pittsburgh, Pittsburgh,
PA, USA (2005). He holds two patents, has published
over 30 refereed publications in computer architec-
ture and high-performance computing, was a winner
of the ACM/DAC student design contests in 2002
and 2004, and received the U.S. National Science
Foundation (NSF) CAREER award in 2009. He is
currently serving as an Associate Editor for ACM
Transactions on Reconfigurable Technology and
Systems, as permanent Program Committee Member
for the IEEE Symposium on Field Programmable
Custom Computing Machines (FCCM) and the IEEE
Symposium on Application-specific Systems, Archi-
tectures, and Processors (ASAP), and is a member of
the IEEE, the IEEE Computer Society, and the
Association for Computing Machinery (ACM).

h Direct questions and comments about this article
to Jason D. Bakos, Department of Computer Science
and Engineering, University of South Carolina,
Columbia, SC 29208 USA; jbakos@cse.sc.edu.

January/February 2014 61

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

