25 research outputs found

    Dynamic Akt/mTOR Signaling in Children with Autism Spectrum Disorder.

    Get PDF
    Autism spectrum disorder (ASD) is a behaviorally defined disorder affecting 1 in 68 children. Currently, there is no known cause for the majority of ASD cases nor are there physiological diagnostic tools or biomarkers to aid behavioral diagnosis. Whole-genome linkage studies, genome-wide association studies, copy number variation screening, and SNP analyses have identified several ASD candidate genes, but which vary greatly among individuals and family clusters, suggesting that a variety of genetic mutations may result in a common pathology or alter a common mechanistic pathway. The Akt/mammalian target of rapamycin (mTOR) pathway is involved in many cellular processes including synaptic plasticity and immune function that can alter neurodevelopment. In this study, we examined the activity of the Akt/mTOR pathway in cells isolated from children with ASD and typically developing controls. We observed higher activity of mTOR, extracellular receptor kinase, and p70S6 kinase and lower activity of glycogen synthase kinase 3 (GSK3)α and tuberin (TSC2) in cells from children with ASD. These data suggest a phosphorylation pattern indicative of higher activity in the Akt/mTOR pathway in children with general/idiopathic ASD and may suggest a common pathological pathway of interest for ASD

    Effects of Wind and Precipitation on Airborne Particulate Levels Around a Frac Sand Mine

    No full text
    Color poster with text, charts, graphs, and images.The goal of our research is to determine whether there is a correlation between PM10 and PM2.5 particles in the air and wind speed/direction and/or precipitation.University of Wisconsin--Eau Claire Office of Research and Sponsored Programs

    Evidence of innate immune dysfunction in first-episode psychosis patients with accompanying mood disorder

    No full text
    BackgroundInflammation and increases in inflammatory cytokines are common findings in psychiatric disorders such as schizophrenia (SCZ), bipolar disorder (BD), and major depressive disorder (MDD). Meta-analyses of studies that measured circulating cytokines have provided evidence of innate inflammation across all three disorders, with some overlap of inflammatory cytokines such as IL-6 and TNF-α. However, differences across disorders were also identified, including increased IL-4 in BD that suggest different immune mechanisms may be involved depending on the type of disorder present.MethodsWe sought to identify if the presence or absence of an affective disorder in first-episode psychotic (FEP) patients was associated with variations in cytokine production after stimulation of peripheral blood mononuclear cells (PBMC). 98 participants were recruited and grouped into healthy controls (n = 45) and first-episode psychosis patients (n = 53). Psychosis patients were further grouped by presence (AFF; n = 22) or lack (NON; n = 31) of an affective disorder. We cultured isolated PBMC from all participants for 48 h at 37 Â°C under four separate conditions; (1) culture media alone for baseline, or the following three stimulatory conditions: (2) 25 ng/mL lipopolysaccharide (LPS), (3) 10 ng/mL phytohemagglutinin (PHA), and (4) 125 ng/ml α-CD3 plus 250 ng/ml α-CD28. Supernatants collected at 48 h were analyzed using multiplex Luminex assay to identify differences in cytokine and chemokine production. Results from these assays were then correlated to patient clinical assessments for positive and negative symptoms common to psychotic disorders.ResultsWe found that PBMC from affective FEP patients produced higher concentrations of cytokines associated with both innate and adaptive immunity after stimulation than non-affective FEP patients and healthy controls. More specifically, the AFF PBMC produced increased tumor necrosis fctor (TNF)-α, interleukin (IL)-1β, IL-6, and others associated with innate inflammation. PBMC from AFF also produced increased IL-4, IL-17, interferon (IFN)γ, and other cytokines associated with adaptive immune activation, depending on stimulation. Additionally, inflammatory cytokines that differed at rest and after LPS stimulation correlated with Scale for the Assessment of Negative Symptoms (SANS) scores.ConclusionsOur findings suggest that immune dysfunction in affective psychosis may differ from that of primary psychotic disorders, and inflammation may be associated with increased negative symptoms. These findings could be helpful in determining clinical diagnosis after first psychotic episode

    T cell populations in children with autism spectrum disorder and co-morbid gastrointestinal symptoms

    No full text
    Children with ASD are more likely to experience gastrointestinal (GI) symptoms than typically-developed children. Numerous studies have reported immune abnormalities and inflammatory profiles in the majority of individuals with ASD. Immune dysfunction is often hypothesized as a driving factor in many GI diseases and it has been suggested that it is more apparent in children with ASD that exhibit GI symptoms. In this study we sought to characterize peripheral T cell subsets in children with and without GI symptoms, compared to healthy typically-developing children. Peripheral blood mononuclear cells were isolated from participants, who were categorized into three groups: children with ASD who experience GI symptoms (n ​= ​14), children with ASD who do not experience GI symptoms (n ​= ​10) and typically-developing children who do not experience GI symptoms (n ​= ​15). In order to be included in the GI group, GI symptoms such as diarrhea, constipation, and/or pain while defecating, had to be present in the child regularly for the past 6 months; likewise, in order to be placed in the no GI groups, bowel movements could not include the above symptoms present throughout development. Cells were assessed for surface markers and intracellular cytokines to identify T cell populations. Children with ASD and GI symptoms displayed elevated TH17 populations (0.757% ​± ​0.313% compared to 0.297% ​± ​0.197), while children with ASD who did not experience GI symptoms showed increased frequency of TH2 populations (2.02% ​± ​1.08% compared to 1.01% ​± ​0.58%). Both ASD groups showed evidence of reduced gut homing regulatory T cell populations compared to typically developing children (ASDGI:1.93% ​± ​0.75% and ASDNoGI:1.85% ​± ​0.89 compared to 2.93% ​± ​1.16%). Children with ASD may have deficits in immune regulation that lead to differential inflammatory T cell subsets that could be linked to associated co-morbidities
    corecore