31 research outputs found

    Molecular Recognition of the Hybrid-Type G-Quadruplexes in Human Telomeres

    No full text
    G-quadruplex (G4) DNA secondary structures formed in human telomeres have been shown to inhibit cancer-specific telomerase and alternative lengthening of telomere (ALT) pathways. Thus, human telomeric G-quadruplexes are considered attractive targets for anticancer drugs. Human telomeric G-quadruplexes are structurally polymorphic and predominantly form two hybrid-type G-quadruplexes, namely hybrid-1 and hybrid-2, under physiologically relevant solution conditions. To date, only a handful solution structures are available for drug complexes of human telomeric G-quadruplexes. In this review, we will describe two recent solution structural studies from our labs. We use NMR spectroscopy to elucidate the solution structure of a 1:1 complex between a small molecule epiberberine and the hybrid-2 telomeric G-quadruplex, and the structures of 1:1 and 4:2 complexes between a small molecule Pt-tripod and the hybrid-1 telomeric G-quadruplex. Structural information of small molecule complexes can provide important information for understanding small molecule recognition of human telomeric G-quadruplexes and for structure-based rational drug design targeting human telomeric G-quadruplexes

    Dynamic control simulation of steam test system boundary based on GSE platform

    No full text
    [Objectives] The bench test is an important means for the design and verification of steam systems,and the accuracy of the boundary condition is a critical factor for studying the characteristics of the bench test.[Methods] In order to propose a feasible dynamic flow boundary control method,based on the change requirements of steam inlet flow in the bench test of a steam system,the two schemes of PID closed-loop control and open-loop control are proposed,and simulation comparison and analysis are carried out. In the GSE simulation system,JTopmeret modules are employed to establish the whole steam test system,the optimization of the modules and correction of parameters are processed on the basis of the data detected in the steam test,and the simulation data is compared with the experimental data to verify the accuracy and validity of the simulation model.[Results] For the control requirements of reducing steam flow linearly by 20 t/h within 10 s,the simulation results show that the open-loop control scheme allows the control of boundary conditions to be achieved after several iterations,while using the traditional PID closed-loop control scheme makes it difficult to control the boundary as required. The test results show that the flow change at the steam inlet meets the test requirements of the bench test,and is consistent with the simulation results.[Conclusions] The results of this research can provide references for the boundary control of steam system bench tests

    Interventional Oncolytic Immunotherapy with LTX-315 for Residual Tumor after Incomplete Radiofrequency Ablation of Liver Cancer

    No full text
    Objective: To investigate the feasibility of interventional oncolytic immunotherapy with LTX-315 for residual tumors after incomplete radiofrequency ablation (iRFA) of VX2 liver tumors in a rabbit model. Methods: For in vitro experiments, VX2 tumor cells were treated with: (1) phosphate buffered saline, (2) radiofrequency hyperthermia (RFH), (3) LTX-315, and (4) RFH plus LTX-315. The residual tumors after iRFA of VX2 liver tumors were treated with: (1) phosphate buffered saline served as control, (2) 2 mg LTX-315, and (3) 4 mg LTX-315. MTS assay, fluorescence microscopy, and flow cytometry were used to compare cell viabilities and apoptosis among different groups. Ultrasound imaging was used to follow up the tumor growth, which were correlated with the optical imaging and subsequent histology. Results: For in vitro experiments, compared with the other three groups, MTS assay demonstrated the lowest cell viability, fluorescence microscopy showed the least survival cells, and apoptosis analysis revealed the highest percentage of apoptosis cells in the combination treatment groups (p p + T cells and HSP70 and a significant decrease of Tregs were observed in residual tumors in the group with 2 mg LTX-315 therapy compared with the control group (p < 0.001). Conclusion: Interventional oncolytic immunotherapy with LTX-315 for residual tumors after iRFA of liver cancer is feasible, which may open up new avenues to prevent residual tumors after RFA of intermediate-to-large liver cancers

    The immunologic and antioxidant effects of L-phenylalanine on the uterine implantation of mice embryos during early pregnancy

    No full text
    L-phenylalanine (L-PHE) is a synthetic precursor of catecholamines. Because it cannot be synthesised by an organism, it must be absorbed from the environment. Despite the wide use of L-PHE, whether L-PHE has a negative impact on embryo implantation and development is poorly understood. This study attempted to determine the roles of L-PHE in embryo implantation and development and in the immune response and antioxidant status of the uterus in early pregnancy mice injected intraperitoneally with 320 mg/kg L-PHE. The embryo number of treated mice decreased by 57.6%, and the size of their embryos was reduced by 2.8% (P>0.05) along the long diameter and 11.9% (P<0.05) along the short diameter at E9 compared with control mice. In addition, L-PHE significantly suppressed B lymphocyte proliferation. L-PHE increased IL-2 secretion but decreased the IL-4 concentration, thereby up-regulating the ratio of IL-2/IL-4 to 1.37-8.45. An analysis of the oxidant and antioxidant status showed that, compared with the control mice, the level of superoxide dismutase activity decreased by 21.54%- 39.94% and the glutathione peroxidase activity decreased by 15.27%-18.96% among the L-PHE-treated mice at E1-E9. However, the malonaldehyde content increased by 14.29%-90.11% among the L-PHE-treated mice. Therefore, L-PHE impaired embryo implantation by disrupting cytokine-based immunity and oxidative stress in the uterus

    Custom G4 Microarrays Reveal Selective G-Quadruplex Recognition of Small Molecule BMVC: A Large-Scale Assessment of Ligand Binding Selectivity

    No full text
    G-quadruplexes (G4) are considered new drug targets for human diseases such as cancer. More than 10,000 G4s have been discovered in human chromatin, posing challenges for assessing the selectivity of a G4-interactive ligand. 3,6-bis(1-Methyl-4-vinylpyridinium) carbazole diiodide (BMVC) is the first fluorescent small molecule for G4 detection in vivo. Our previous structural study shows that BMVC binds to the MYC promoter G4 (MycG4) with high specificity. Here, we utilize high-throughput, large-scale custom DNA G4 microarrays to analyze the G4-binding selectivity of BMVC. BMVC preferentially binds to the parallel MycG4 and selectively recognizes flanking sequences of parallel G4s, especially the 3&prime;-flanking thymine. Importantly, the microarray results are confirmed by orthogonal NMR and fluorescence binding analyses. Our study demonstrates the potential of custom G4 microarrays as a platform to broadly and unbiasedly assess the binding selectivity of G4-interactive ligands, and to help understand the properties that govern molecular recognition
    corecore