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Abstract—Federated learning (FL) is a rising distributed ma-
chine learning area, which aims to train a high-performing global
model with data collected from a number of local clients. Many
FL applications receive data over time in the form of data
streams. Streaming data are likely to suffer concept drift. It
can significantly harm a model’s predictive ability. However, no
study has characterized concept drift in FL or investigated how it
can affect the global and local models’ performance. This paper
aims to provide such understanding by 1) categorizing concept
drift in temporal and spatial dimensions with ten features and 2)
investigating the impact of the features in depth. We find that:
the temporal features degrade FL models to a different extend
and do not affect model convergence after the new data concept
becomes stable; the spatial features cause data heterogeneity and
affect both accuracy and convergence speed.

Index Terms—federated learning, concept drift, data stream
learning

I. INTRODUCTION

Federated learning (FL) is a recent and fast-developing
machine learning (ML) area, designed to learn from distributed
data from local clients without centralising them. It has raised
great interest from industry, in particular the edge computing
and healthcare fields, where large-scale data are generated
within a modern distributed network, coupled with concerns
over data privacy and transmission security. Data generated
from these types of applications are mostly in the form of
data streams, and tend to suffer from data non-stationarity.
For example, environment sensor data are affected by human
behaviours and seasons; traffic data vary with the time of the
day, road conditions, etc. [1], [2].

Data non-stationarity is hardly touched upon in FL. Existing
FL algorithms assume that client data has a stable distribution,
so that the global model trained from the past remains valid for
future data. Nevertheless, this assumption does not often hold
in real-world applications. A non-adaptive model trained under
a false stationarity assumption is bound to become obsolete
over time. In addition, distribution changes can cause data
heterogeneity among clients over time, which has been proved
to be a performance hindrance to FL algorithms [3].

In classification tasks, concept drift is the main type of
changes in data distributions. It is said to occur when the

The source codes and the datasets in this paper are available at:
https://github.com/TreeWIA/FLStream

joint probability P (x, y) of data changes, where x is the input
feature vector and y is the target label/class [4]. Concept drift
has been discussed extensively in the traditional ML. There
exist active drift detectors (e.g. DDM [5], ADWIN [6]) and
passive approaches that evolve a learning model continuously
[1]. However, none of these approaches can be directly used
in FL. Clients in FL do not share data with the global model.
Moreover, concept drift manifests three statistical forms at
various speeds, severities, frequencies, etc. Concept drifts with
different features require corresponding drift detection and
adaptation strategies for the best performance [7].

Some very recent papers have realised the importance of
overcoming concept drift in FL systems, detailed in the next
section. Unfortunately, none of them discriminate concept drift
systematically. These solutions may thus become less effective.
In addition to the temporal features of concept drift that pose
performance risks to FL models, new challenges arise in the
spatial dimension. Across multiple clients, concept drift can
affect them differently. So far, it is unclear whether, when
and how the temporal and spatial features of concept drift
affect the performance of the global and local FL models.
It is impossible to develop effective solutions without such
fundamental understanding.

With this question in mind, this paper aims to find out
the impact of concept drift in FL. Firstly, we propose the
very first categorization of concept drift in FL to characterise
concept drift in temporal and spatial dimensions. Secondly,
we investigate three temporal features (i.e. drifting form,
speed, severity) and two spatial features (i.e. drift coverage
and synchronism) in depth. It provides insights into how
concept drift should be treated appropriately and guidance on
developing targeted solutions. For the wide application and
simplicity, horizontal FL is the focus of this work, where client
data share the same feature space.

II. RELATED WORK

In this section, we review the research progress on concept
drift in traditional data stream learning and FL.

A. Data Stream Learning and Concept Drift

Data stream learning is a ML area aiming at real-time
learning and prediction with time varying data streams. Con-



cept drift is a key challenge, referred to as a change in
data distributions [2]. There exist three fundamental forms of
concept drift corresponding to the three major variables in
Bayes’ theorem: P (x) virtual drift, P (y) prior probability
drift and P (y|x) posterior probability drift or real drift.
Only the posterior probability drift causes true classification
boundary changes, where the model must be adapted to the
new concept. Although the other two forms do not affect the
true boundary, they may cause learning bias in the model.
Because the underlying reasons for performance degradation
are different, each form of drift requires targeted solutions.
Concept drift has also been characterised by changing speed,
severity, recurrence, frequency and predictability [8], bringing
in additional challenges to be considered when developing
solutions. These factors form the temporal features of a
concept drift, which can be used to describe any distribution
change in a single data stream.

Existing concept drift work focuses on drift detection and
drift adaptation. Drift detection algorithms report the timing
when a drift occurs. For example, the widely used DDM [5]
defines warning and drift levels by monitoring the model’s
error rate. Drift adaptation methods adapts the predictive
model to the new concept and maintain its performance. Key
techniques include simple retraining, ensemble retraining, and
model adjustment.

B. Concept Drift in FL

There is limited research on the concept drift problem in FL.
The existing work includes passive adaption approaches (CFL
[9], FedDC [10] and Adaptive-FedAvg [11]) and approaches
with active drift detection (FedConD [12], CDA-FedAvg [13],
the drifting-node isolation method [14], and the most recent
FedDrift-Eager and FedDrift algorithms [15]).

The common strategies of these approaches can be sum-
marized as 1) comparing local data distributions or model
parameters, 2) isolating drifted clients via regularization or
the learning rate or 3) training more than one global model.
None of the above work explicitly differentiate between drift
in time and space. For example, CDA-FedAvg assumes that
the same virtual concept drift occurs to all the clients at the
same time. FedConD only considers sudden and gradual two
types of drift differing in speed. This paper will fill in this gap
by providing a systematic and in-depth study.

III. CATEGORIZATION OF CONCEPT DRIFT IN FL

In this section, we propose the first taxonomy that clearly
categorizes and describes concept drift in FL in temporal and
spatial dimensions. We propose a set of features that fall
into two categories – the temporal and spatial features (see
Fig. 1). The temporal features are those that exist in a single
data stream, as described in Section II-A, including changing
form, speed, severity, recurrence, frequency and predictabil-
ity [4] [8]. The spatial features are unique to FL. They describe
how concept drift occurs among the clients. We propose the
following four new spatial features: coverage, synchronism,
direction and correlation. A concept drift may not affect all the

clients at the same time; for example, the monitored traffic jam
eventually spreads to other sensors. Thus, we need coverage
and synchronism to describe the scenarios. Clients can be
affected by different drifts; for example, one type of disease
becomes more frequent in one region, which however becomes
less frequent in another region. These drifts could be the same
form of change but in different directions. They can be either
independent or correlated. A detailed explanation for each
feature is given below.

Fig. 1: Categorization of concept drift in FL.

The temporal features use form, speed and severity to
characterise a single concept drift (i.e. isolated drift) in any
data stream. If there are more than one (i.e. drift sequence),
recurrence, frequency and predictability are used to describe
the changing pattern. All the features (except “form”) are
further illustrated in Fig. 2, where the horizontal direction is
the time steps and the vertical direction shows how the drift
occurs in 9 cases. Case 1 is a data stream without any drift.

Fig. 2: Temporal features of concept drift.

1) Form: describes how data instances move within or across
classification boundaries, including P (x), P (y), P (y|x).
2) Speed: describes how fast the current data concept changes
to a new concept. An abrupt/sudden drift occurs very quickly
without having any intermediate or recurrent concept (case
2). If the new concept gradually takes over, this can be a



‘gradual’ drift or an ‘incremental’ drift. A ‘gradual’ drift is a
probabilistic change, where the old concept becomes less and
less frequent until it disappears (case 3). An ‘incremental’ drift
is the scenario where the old concept moves towards the new
concept, with intermediate concepts [4] generated along the
way. Cases 4 and 5 illustrate two incremental changes at a
different speed.
3) Severity: describes the degree of concept drift or the
distance between the old and new concept. Case 5 is a more
severe change than case 6.
4) Recurrence: the cases with returns to previous concepts are
called “recurrent” drift (case 7).
5) Frequency: describes how often a drift occurs in the data
stream. Case 8 is less frequent than case 7.
6) Predictability: describes whether a drift is predictable (i.e.
randomness). Case 9 has a random change from triangle to
heart shapes.

The spatial features describe concept drift across clients.
They trigger another widely discussed topic in FL – data
heterogeneity, a key factor of global performance of FL
models. They are illustrated in Fig. 3.

(a) coverage (b) synchronism

(c) direction (d) correlation

Fig. 3: Spatial features of concept drift.

7) Coverage: describes how many clients are affected by
concept drift around the same time. In Fig. 3a, 3 out of 5
clients suffers from drift (changing from triangle to circle).
8) Synchronism: describes whether concept drift occurs at the
same time. In Fig. 3a, clients 3-5 suffer synchronous drift; in
Fig. 3b, the drift affects clients 2-5 asynchronously.
9) Direction: describes the changing directions of concept drift
among clients. Between two clients (e.g. Fig. 3c), they may
have exactly the same temporal features, but their changing
direction can be different (client 1 is changing from heptagon
to circle and client 2 is changing to triangle).
10) Correlation: describes whether and how the drift among
clients are correlated. The correlated case is illustrated in
Fig. 3d, where both clients change from triangle to quadrilat-
eral, but one becomes square and the other becomes rhombus.

This paper focuses on three temporal features (form, speed
and severity) and two spatial features (coverage and synchro-
nism). The others will be included in our future work.

IV. SCENARIO ANALYSIS ON ARTIFICIAL DATA

In this section, we conduct experiments on a set of simulated
scenarios with different temporal and spatial features settings.
The objective is to understand how they affect the performance
of the global and local models.

A. Data Description

A hyperplane data generator [16] is used to generate arti-
ficial scenarios with P (y|x) concept drifts. A P (y|x) drift
occurs when the hyperplane turns around. The drifting speed
and severity can be easily manipulated. However, the linear
separability is too easy to observe the impact of P (x) and
P (y) drifts. To study these two drifting forms, we adopt
the Sine data generator [5]. The generated inputs from both
generators are 2-dimensional. The output label is binary,
decided by the hyperplane and the Sine function.

B. Scenario Design

We have established 15 experimental scenarios, encom-
passing three forms of drift, speed, severity, coverage, and
synchronism. Their feature settings are summarized in Table I.
All of the cases generate 1000 batches (i.e. time steps) of data
for 10 clients. Every batch contains 100 samples at each client.

TABLE I: Artificial Scenarios and their feature settings.

No. Generator Form Speed Severity Cov Syn
1 Sine P (x) A H H S
2 Sine P (y) A H H S
3 Sine P (y|x) A H H S
4 Hyperplane P (y|x) A H H S
5 Hyperplane P (y|x) G H H S
6 Hyperplane P (y|x) I H H S
7 Hyperplane P (y|x) A M H S
8 Hyperplane P (y|x) G M H S
9 Hyperplane P (y|x) I M H S
10 Hyperplane P (y|x) A L H S
11 Hyperplane P (y|x) G L H S
12 Hyperplane P (y|x) I L H S
13 Hyperplane P (y|x) A H M S
14 Hyperplane P (y|x) A H L S
15 Hyperplane P (y|x) A H H AS

Cov: coverage; Syn: synchronism; A: abrupt; G: gradual; I: incremental;
H: high; M: medium; L: low; S: synchronous; AS: asynchronous.

The detailed settings inside each scenario can be found on
our github project page.

C. Experimental Settings

Each client trains and maintains a Multilayer Perceptron
(MLP) model. Stochastic gradient descent (SGD) was chosen
as the optimizer with a learning rate of 0.005. The global
model is also a MLP that aggregates SGD updates through
FedAvg. The experiments adopt the test-then-train method for
performance evaluation at both clients and the server sides.
Every client model is always tested with the next-batch local
dataset. The global model is tested at each time step, with a
dataset formed by 10% randomly sampled local data at each
of the 10 clients from the next batch. It allows the global
model to be tested on the same size of dataset as the clients.
The test-then-train process is repeated 20 times. The average
client and global accuracy is compared in the next section.

D. Experimental Analysis

We firstly discuss the three temporal features – form, speed,
severity, while assuming the full coverage of synchronous



(a) P (x). (b) P (y). (c) P (y|x).

Fig. 4: Global model accuracy in scenarios 1,2,3.

concept drift on the clients. Because all the clients suffer the
same drift at the same time in these cases, the global model’s
performance behavior is very similar to the locals’, and Fig. 4
- Fig. 6 present the global performance only to save space.

Fig. 4 compares the impact of the 3 forms of concept drift.
The P (y|x) drift has been shown to be a more severe drift
form than the other two, because it causes real boundary
changes. The P (y|x) plots in Fig. 4 presents an over 70%
accuracy drop right after time step 200, when the real drift
occurs. The P (x) and P (y) cases suffer approximately 10%
accuracy drop, implying P (x) and P (y) changes affect model
performance. The P (y) drift causes class imbalance problems,
which links to another learning challenge in FL [17] [18].

Fig. 5 compares the abrupt/gradual/incremental P (y|x)
drift cases. The abrupt case presents more severe and sharper
accuracy reduction, as all the affected data undergo the change
suddenly at the same time. The gradual and incremental cases
produce intermediate concepts between time steps 200 and
300, so they show lesser but still significant reduction.

Fig. 6 compares the H/M/L levels of P (y|x) drift. The more
severe the concept drift at the clients is, the greater decrease
in accuracy the local and global models have.

(a) Abrupt-H. (b) Gradual-H. (c) Incremental-H.

Fig. 5: Global model accuracy in scenarios 4,5,6.

The speed and severity features do not appear to affect the
global model convergence. They all recover back to the similar
performance level compared to that before the drift.

Fig. 7 compares 3 levels of drifting coverage among the 10
clients, with the same P (y|x) drift: H – all clients suffered
the drift; M – half clients (6-10) suffered the drift; L – one
client (10) suffered the drift. All the local models fed with the
time-drifting data show a significant accuracy reduction. It is
interesting to see that the global model in the case with a full

(a) Abrupt-H. (b) Abrupt-M. (c) Abrupt-L.

Fig. 6: Global model accuracy in scenarios 4,7,10.

coverage of change quickly converges back to the previous
performance level, because all the local models are trained
and converge towards the same direction. In other words,
the local data streams remain homogeneous. The M and L
coverage cases, however, lead to heterogeneous data after the
change, which causes convergence difficulty. In addition, the
global model’s performance tends to bias towards the majority
data concepts. These observations suggest that, training and
maintaining one global model may be insufficient to guarantee
good performance on all the clients with time varying data.

(a) Coverage-H-Client. (b) Coverage-H-Global.

(c) Coverage-M-Client. (d) Coverage-M-Global.

(e) Coverage-L-Client. (f) Coverage-L-Global.

Fig. 7: Local and global model accuracy in scenarios 4,13,14.

Fig. 8 illustrates the asynchronous concept drift among the
clients, where the same drift affect clients 2 to 10 sequentially



at interval of 100 time steps from time step 100. During the
first half of scenario 15 when less than half of the clients are
affected by the concept drift, clients 2-6 suffer an accuracy
drop because the global model is still dominated by the old
concept; from time step 500 when the global model starts to
be dominated by the new concept, the local models (clients 7
- 10) in the old concept start to suffer the accuracy loss until
the corresponding client switches to the new concept. As the
data heterogeneity level becomes less, the global performance
is also rising up. This scenario further supports the claim that
the global model biases towards the majority concept.

(a) Asy-Client. (b) Asy-Global.

Fig. 8: Local and global model accuracy in scenario 15.

V. EXPERIMENTS ON REAL-WORLD DATA

In this section, we aim to find out the impact of concept
drift on two real-world datasets – Electricity [19] and Forest
Covertype (abbr. CoverType) [20]. Since we do not know the
ground-truth of concept drift, we apply DDM [5] to detect
the occurrence of drift at the clients and the central server
and track the global model’s accuracy over time, in order to
examine if there is any correlation between the local drifts
and the global accuracy. How to quantitatively measure the
proposed features on real-world data is still an open question,
which will be further studied. The number of training epochs
at each time step was set to 500 for performance convergence.
The other FL settings follow Section IV.

A. Data Description

Electricity contains 45,312 instances, collected at a 5-minute
interval. The class label identifies the change of the price (2
classes) relative to a moving average of the last 24 hours.
CoverType aims to predict the forest cover type (7 class
labels) based on 581,012 instances and 54 attributes. To fit the
datasets into our purpose, we distribute the instances one by
one to each of the 10 clients without shuffling the data. Every
100 instances form a batch at one time step for each client.
Electricity has 45 batches and CoverType has 581 batches in
total. By doing so, the temporal order is kept, and the local
datasets are likely to be homogeneous over time.

B. Experimental Analysis

We count the number of drifts detected by DDM at the
local and the global models within a certain time period
(every 10 batches for Electricity and every 100 batches for
CoverType). They reflect how often an obvious accuracy drop

can be observed during each period. Both datasets have the
same DDM sensitivity threshold setting at 1.88. Table II and
Table III show the numbers of the reported concept drift
by DDM at the clients and the global models, in Electricity
and CoverType respectively. Their global accuracy curves are
shown in Fig. 9 and Fig. 10.

TABLE II: The number of detected drift in Electricity.

Model 0-9 10-19 20-29 30-39 40-46
Client 1 4.0 2.65 1.95 1.7 1.0
Client 2 3.0 2.75 0.95 0.0 1.1
Client 3 3.7 2.35 1.15 0.35 1.75
Client 4 3.05 2.8 2.35 0.4 1.05
Client 5 2.85 2.5 1.95 0.65 1.0
Client 6 3.75 1.9 1.15 1.6 1.1
Client 7 3.0 1.65 1.35 1.4 1.0
Client 8 3.05 2.25 1.85 1.55 1.1
Client 9 3.0 3.4 1.3 0.55 1.75

Client 10 2.85 3.45 1.85 1.65 2.0
Global 1.7 1.8 1.7 0.4 1.8

TABLE III: The number of detected drift in CoverType.

Model 0-99 100-199 200-299 300-399 400-499 500-581
Client 1 12.5 2.0 2.0 5.7 6.05 10.2
Client 2 11.1 2.25 6.35 4.95 5.5 9.7
Client 3 11.7 6.25 7.4 5.1 4.05 10.45
Client 4 11.3 3.3 6.5 3.0 5.6 3.25
Client 5 11.8 3.2 4.85 3.15 5.65 4.3
Client 6 13.95 3.4 5.25 3.45 6.5 10.2
Client 7 11.1 3.35 3.4 4.35 6.05 10.25
Client 8 11.95 2.3 2.4 5.0 6.2 14.05
Client 9 10.3 3.2 3.35 5.0 4.15 11.7

Client 10 14.3 2.1 4.45 5.15 3.15 9.3
Global 16.35 17.8 8.9 3.0 5.65 12.4

Fig. 9: Global testing accuracy in Electricity.

Comparing Electricity and CoverType, the latter has many
more data batches collected over time and presents more
fluctuations in accuracy. In Electricity, the number of the
detected drift is relatively stable over time for both of the
client models and the global model. The corresponding global
accuracy is also relatively stable with a few fluctuations in the
range of [60%, 80%]. In CoverType, the global model in the
first two periods [0, 199] and the last period [500-581] has a
higher number of drift. Correspondingly, the accuracy presents
more significant drops during this time. This is consistent
with our observations in the artificial scenarios. An unexpected
observation is that the number of drift at the clients can be



Fig. 10: Global testing accuracy in Forest CoverType.

significantly different from that at the global model. A local
model significantly affected by concept drift does not mean
that the global model is significantly affected, and vice versa.
This finding is significant, because it sheds light on how to
detect concept drift (on clients, server or both) and how to
adapt the models to concept drift.

VI. CONCLUSIONS

In this paper, we studied concept drift in FL by categorizing
it with ten features (including six temporal features and four
spatial features) and investigating how five of the features (i.e.
form, speed, severity, coverage and synchronism) affect model
accuracy and convergence globally and locally.

By simulating fifteen artificial data stream scenarios with
different feature settings and experimenting on two real-
world datasets, we find that all the discussed features have
a significant and negative impact on the global and local
models’ accuracy. The impact of the temporal features are
similar to that in the traditional single data stream learning.
Once the new concept becomes stable at the local clients, the
performance recovers back to the previous level. The spatial
features affect both accuracy and model convergence. The
global model biases towards the data concept in the majority
of the clients, and thus performs poorly on the minority
concept. The accuracy does not converge back due to data
heterogeneity caused by concept drift. These findings suggest
us: 1) concept drift must be treated in FL. 2) Different types
of drift under our categorization need targeted treatments. 3)
Solely looking at the global or local performance is insufficient
to tackle concept drift because the global performance does not
necessarily reflect local accuracy. 4) Whether to detect concept
drift locally or globally is unclear, because local and global
performance can behave differently.

The next follow-up work is the five features in our cate-
gorization that are not studied in this paper. In addition, we
will develop metrics to quantify the features and statistically
evaluate their impact on more real-world datasets. Vertical FL
will also be considered.
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