870 research outputs found

    Comparative immunoprofiling of polymyositis and dermatomyositis muscles

    Get PDF
    The morphological, immunohistochemical, and immunopathological analyses of muscle biopsy are essential for the diagnosis of idiopathic inflammatory myopathies (IIMs). However, they are also one of the most common causes of misdiagnosis. Although several diagnostic criteria have been proposed for the diagnosis of IIMs, misdiagnosis still remains common in clinical practice. The present study aims to characterize the inflammatory profile of IIMs, including the expression of MHC-I, MHC-II, MAC and infiltrating cells. We also investigated the sensitivity and specificity of MHC-I and MHC-II immunostaining for the diagnosis of IIMs. We found that the expression of MHC-I and MHC-II was both higher in IIMs than in non-inflammatory myopathies (NIMs). The distribution of MHC-I in IIMs is different from that of MHC-II. MHC-I is mainly located in the sarcoplasms, while MHC-II is located mostly on the sarcolemmas. Moreover, our findings suggest that MAC may be a potential marker to diagnose DM, and the combination of MHC-I and MHC-II immunostaining results in a higher sensitivity and specificity for IIM diagnosis, especially for DM. In addition, infiltrating cells in PM were mainly CD8+ cells, but we found in DM and NIMs they were primarily CD4+ cells, which is consistent with previous studies. Lastly, glucocorticoid treatment and disease duration have little effect on the MHC-I and MHC-II expression pattern. Our findings indicate that the immunostaining of inflammatory markers such as MHC-I, MHC-II, CD4, CD8, CD303 and MAC are of diagnostic value for IIMs regardless of the immunosuppression regime and disease duration

    Huge metastability in high-T_c superconductors induced by parallel magnetic field

    Full text link
    We present a study of the temperature-magnetic field phase diagram of homogeneous and inhomogeneous superconductivity in the case of a quasi-two-dimensional superconductor with an extended saddle point in the energy dispersion under a parallel magnetic field. At low temperature, a huge metastability region appears, limited above by a steep superheating critical field (H_sh) and below by a strongly reentrant supercooling field (H_sc). We show that the Pauli limit (H_p) for the upper critical magnetic field is strongly enhanced due to the presence of the Van Hove singularity in the density of states. The formation of a non-uniform superconducting state is predicted to be very unlikely.Comment: 5 pages, 2 figures; to appear in Phys. Rev.

    Scattering of the halo nucleus 11Be from a lead target at 3.5 times the Coulomb barrier energy

    Get PDF
    Angular distributions of quasielastic scattering and breakup of the neutron-rich halo nucleus 11Be on a 208Pb target at an incident energy of 140 MeV (about 3.5 times the Coulomb barrier) were measured at HIRFL-RIBLL. A strong suppression of the Coulomb nuclear interference peak is observed in the measured quasielastic scattering angular distribution. The result demonstrates for the first time the persistence of the strong breakup coupling effect reported so far for reaction systems involving neutron-halo nuclei at this relatively high incident energy. The measured quasielastic scattering cross sections are satisfactorily reproduced by continuum discretized coupled channel (CDCC) calculations as well as by the XCDCC calculations where the deformation of the 10Be core is taken into account. The angular and energy distributions of the 10Be fragments could also be well reproduced considering elastic breakup (CDCC and XCDCC) plus nonelastic breakup contributions, with the latter evaluated with the model by Ichimura, Austern and Vincent [1]. The comparison of the 10Be energy distributions with simple kinematical estimates evidence the presence of a significant post-acceleration effect which, in the (X)CDCC frameworks, is accounted for by continuum-continuum couplings.National Key Research and Development Program of China (Grant No. 2018YFA0404403)National Natural Science Foundation of China (Grant No. 11775013, No. 11947203, No. 11575256, and No. U1632138)Youth Innovation Promotion Association CAS (No. 2020411)Ministerio de Ciencia, InnovaciĆ³n y Universidades FIS2017-88410-PEuropean Unionā€™s Horizon 2020 (Grant Agreement No. 654002

    The Effects of Disorder on the Ī½=1\nu=1 Quantum Hall State

    Full text link
    A disorder-averaged Hartree-Fock treatment is used to compute the density of single particle states for quantum Hall systems at filling factor Ī½=1\nu=1. It is found that transport and spin polarization experiments can be simultaneously explained by a model of mostly short-range effective disorder. The slope of the transport gap (due to quasiparticles) in parallel field emerges as a result of the interplay between disorder-induced broadening and exchange, and has implications for skyrmion localization.Comment: 4 pages, 3 eps figure

    Heart rate variability and peripheral nerve conduction velocity in relation to blood lead in newly hired lead workers.

    Get PDF
    Previous studies relating nervous activity to blood lead (BL) levels have limited relevance, because over time environmental and occupational exposure substantially dropped. We investigated the association of heart rate variability (HRV) and median nerve conduction velocity (NCV) with BL using the baseline measurements collected in the Study for Promotion of Health in Recycling Lead (NCT02243904). In 328 newly hired men (mean age 28.3 years; participation rate 82.7%), we derived HRV measures (power expressed in normalised units (nu) in the high-frequency (HF) and low-frequency (LF) domains, and LF/HF) prior to long-term occupational lead exposure. Five-minute ECG recordings, obtained in the supine and standing positions, were analysed by Fourier transform or autoregressive modelling, using Cardiax software. Motor NCV was measured at the median nerve by a handheld device (Brevio Nerve Conduction Monitoring System, NeuMed, West Trenton, NJ, USA). BL was determined by inductively coupled plasma mass spectrometry. Mean BL was 4.54 Āµg/dL (IQR 2.60-8.90 Āµg/dL). Mean supine and standing values of LF, HF and LF/HF were 50.5 and 21.1 nu and 2.63, and 59.7 and 10.9 nu and 6.31, respectively. Orthostatic stress decreased HF and increased LF (p<0.001). NCV averaged 3.74 m/s. Analyses across thirds of the BL distribution and multivariable-adjusted regression analyses failed to demonstrate any association of HRV or NCV with BL. At the exposure levels observed in our study, autonomous nervous activity and NCV were not associated with BL. NCT02243904

    Circulating biomarkers predicting longitudinal changes in left ventricular structure and function in a general population

    Get PDF
    Background Serial imaging studies in the general population remain important to evaluate the usefulness of pathophysiologically relevant biomarkers in predicting progression of left ventricular (LV) remodeling and dysfunction. Here, we assessed in a general population whether these circulating biomarkers at baseline predict longitudinal changes in LV structure and function. Methods and Results In 592 participants (mean age, 50.8 years; 51.4% women; 40.5% hypertensive), we derived echocardiographic indexes reflecting LV structure and function at baseline and after 4.7 years. At baseline, we measured alkaline phosphatase, markers of collagen turnover (procollagen type I, Cā€terminal telopeptide, matrix metalloproteinaseā€1) and highā€sensitivity cardiac troponin T. We regressed longitudinal changes in LV indexes on baseline biomarker levels and reported standardized effect sizes as a fraction of the standard deviation of LV change. After full adjustment, a decline in LV longitudinal strain (āˆ’14.2%) and increase in E/eā€² ratio over time (+18.9%; Pā‰¤0.019) was associated with higher alkaline phosphatase activity at baseline. Furthermore, longitudinal strain decreased with higher levels of collagen I production and degradation at baseline (procollagen type I, āˆ’14.2%; Cā€terminal telopeptide, āˆ’16.4%; Pā‰¤0.029). An increase in E/eā€² ratio over time was borderline associated with lower matrix metalloproteinaseā€1 (+9.8%) and lower matrix metalloproteinaseā€1/tissue inhibitor of metalloproteinaseā€1 ratio (+11.9%; Pā‰¤0.041). Higher highā€sensitivity cardiac troponin T levels at baseline correlated significantly with an increase in relative wall thickness (+23.1%) and LV mass index (+18.3%) during followā€up (Pā‰¤0.035). Conclusions We identified a set of biomarkers predicting adverse changes in LV structure and function over time. Circulating biomarkers reflecting LV stiffness, injury, and collagen composition might improve the identification of subjects at risk for subclinical cardiac maladaptation

    Colletotrichum species associated with anthracnose of Pyrus spp. in China

    Get PDF
    Colletotrichum species are plant pathogens, saprobes, and endophytes on a range of economically important hosts. However, the species occurring on pear remain largely unresolved. To determine the morphology, phylogeny and biology of Colletotrichum species associated with Pyrus plants, a total of 295 samples were collected from cultivated pear species (including P. pyrifolia, P. bretschneideri, and P. communis) from seven major pear-cultivation provinces in China. The pear leaves and fruits affected by anthracnose were sampled and subjected to fungus isolation, resulting in a total of 488 Colletotrichum isolates. Phylogenetic analyses based on six loci (ACT, TUB2, CAL, CHS-1, GAPDH, and ITS) coupled with morphology of 90 representative isolates revealed that they belong to 10 known Colletotrichum species, including C. aenigma, C. citricola, C. conoides, C. fioriniae, C. fructicola, C. gloeosporioides, C. karstii, C. plurivorum, C. siamense, C. wuxiense, and two novel species, described here as C. jinshuiense and C. pyrifoliae. Of these, C. fructicola was the most dominant, occurring on P. pyrifolia and P. bretschneideri in all surveyed provinces except in Shandong, where C. siamense was dominant. In contrast, only C. siamense and C. fioriniae were isolated from P. communis, with the former being dominant. In order to prove Koch's postulates, pathogenicity tests on pear leaves and fruits revealed a broad diversity in pathogenicity and aggressiveness among the species and isolates, of which C. citricola, C. jinshuiense, C. pyrifoliae, and C. conoides appeared to be organ-specific on either leaves or fruits. This study also represents the first reports of C. citricola, C. conoides, C. karstii, C. plurivorum, C. siamense, and C. wuxiense causing anthracnose on pear.Earmarked Fundhttps://www.ingentaconnect.com/content/nhn/pimjhj2020BiochemistryForestry and Agricultural Biotechnology Institute (FABI)GeneticsMicrobiology and Plant Patholog
    • ā€¦
    corecore