2,697 research outputs found

    Edge and bulk merons in double quantum dots with spontaneous interlayer phase coherence

    Full text link
    We have investigated nucleation of merons in double quantum dots when a lateral distortion with a reflection symmetry is present in the confinement potential. We find that merons can nucleate both inside and at the edge of the dots. In addition to these merons, our results show that electron density modulations can be also present inside the dots. An edge meron appears to have approximately a half integer winding number.Comment: 5 pages, 4 figures, Proceedings of 17th International Conference on High Magnetic Fields in Semiconductor Physic

    Hole maximum density droplets of an antidot in strong magnetic fields

    Full text link
    We investigate a quantum antidot in the integer quantum Hall regime (the filling factor is two) by using a Hartree-Fock approach and by transforming the electron antidot into a system which confines holes via an electron-hole transformation. We find that its ground state is the maximum density droplet of holes in certain parameter ranges. The competition between electron-electron interactions and the confinement potential governs the properties of the hole droplet such as its spin configuration. The ground-state transitions between the droplets with different spin configurations occur as magnetic field varies. For a bell-shape antidot containing about 300 holes, the features of the transitions are in good agreement with the predictions of a recently proposed capacitive interaction model for antidots as well as recent experimental observations. We show this agreement by obtaining the parameters of the capacitive interaction model from the Hartree-Fock results. An inverse parabolic antidot is also studied. Its ground-state transitions, however, display different magnetic-field dependence from that of a bell-shape antidot. Our study demonstrates that the shape of antidot potential affects its physical properties significantly.Comment: 12 pages, 11 figure

    Thermodynamic and Tunneling Density of States of the Integer Quantum Hall Critical State

    Full text link
    We examine the long wave length limit of the self-consistent Hartree-Fock approximation irreducible static density-density response function by evaluating the charge induced by an external charge. Our results are consistent with the compressibility sum rule and inconsistent with earlier work that did not account for consistency between the exchange-local-field and the disorder potential. We conclude that the thermodynamic density of states is finite, in spite of the vanishing tunneling density of states at the critical energy of the integer quantum Hall transition.Comment: 5 pages, 4 figures, minor revisions, published versio

    Thermally Activated Reversible Threshold Shifts in Yba\u3csub\u3e2\u3c/sub\u3eCu\u3csub\u3e3\u3c/sub\u3eO\u3csub\u3e7-δ\u3c/sub\u3e/Yttria-Stabilized Zirconia/Si Capacitors

    Get PDF
    Yba2Cu3O7-δ/yttria‐stabilized zirconia (YSZ)/silicon superconductor–insulator–semiconductor capacitors are characterized with capacitance‐voltage (C‐V) measurements at different gate‐voltage sweep rates and under bias‐temperature cycling. It is shown that ionic conduction in YSZ causes both hysteresis and stretch‐out in room‐temperature C‐V curves. A thermally activated process with an activation energy of about 39 meV in YSZ and/or at YSZ/Si interface is attributed to trapping/detrapping mechanisms in the SiOx interfacial layer between YSZ and Si. The negative mobile ions in YSZ can be moved by an applied electric field at room temperature and then ‘‘frozen’’ with decreasing temperature, giving rise to adjustable threshold voltages at low temperatures

    Single electron control in n-type semiconductor quantum dots using non-Abelian holonomies generated by spin orbit coupling

    Full text link
    We propose that n-type semiconductor quantum dots with the Rashba and Dresselhaus spin orbit interactions may be used for single electron manipulation through adiabatic transformations between degenerate states. All the energy levels are discrete in quantum dots and possess a double degeneracy due to time reversal symmetryin the presence of the Rashba and/or Dresselhaus spin orbit coupling terms. We find that the presence of double degeneracy does not necessarily give rise to a finite non-Abelian (matrix) Berry phase. We show that a distorted two-dimensional harmonic potential may give rise to non-Abelian Berry phases. The presence of the non-Abelian Berry phase may be tested experimentally by measuring the optical dipole transitions.Comment: accepted in Phys. Rev.
    • …
    corecore