560 research outputs found

    Deep-subwavelength features of photonic skyrmions in a confined electromagnetic field with orbital angular momentum

    Get PDF
    In magnetic materials, skyrmions are nanoscale regions where the orientation of electron spin changes in a vortex-type manner. Here we show that spin-orbit coupling in a focused vector beam results in a skyrmion-like photonic spin distribution of the excited waveguided fields. While diffraction limits the spatial size of intensity distributions, the direction of the field, defining photonic spin, is not subject to this limitation. We demonstrate that the skyrmion spin structure varies on the deep-subwavelength scales down to 1/60 of light wavelength, which corresponds to about 10 nanometre lengthscale. The application of photonic skyrmions may range from high-resolution imaging and precision metrology to quantum technologies and data storage where the spin structure of the field, not its intensity, can be applied to achieve deep-subwavelength optical patterns

    Ideal-based zero-divisor graph of MV-algebras

    Full text link
    Let (A,,,0)(A, \oplus, *, 0) be an MV-algebra, (A,,0)(A, \odot, 0) be the associated commutative semigroup, and II be an ideal of AA. Define the ideal-based zero-divisor graph ΓI(A)\Gamma_{I}(A) of AA with respect to II to be a simple graph with the set of vertices V(ΓI(A))={xA\I  ( yA\I) xyI},V(\Gamma_{I}(A))=\{x\in A\backslash I ~|~ (\exists~ y\in A\backslash I) ~x\odot y\in I\}, and two distinct vertices xx and yy are joined by an edge if and only if xyIx\odot y\in I. We prove that ΓI(A)\Gamma_{I}(A) is connected and its diameter is less than or equal to 33. Also, some relationship between the diameter (the girth) of ΓI(A)\Gamma_{I}(A) and the diameter (the girth) of the zero-divisor graph of A/IA/I are investigated. And using the girth of zero-divisor graphs (resp. ideal-based zero-divisor graphs) of MV-algebras, we classify all MV-algebras into 2 (2~(resp. 3)3) types

    Combined effect of celecoxib and glucosamine sulfate on inflammatory factors and oxidative stress indicators in patients with knee osteoarthritis

    Get PDF
    Purpose: To investigate the combined effect of celecoxib and glucosamine sulfate on inflammatory factors and oxidative stress indicators in patients with knee osteoarthritis (KOA).Methods: Patients were randomly assigned to two groups of 60 patients each: control group and study group. The control group received celecoxib at a dose of 200 mg/kg/day, while the study group received glucosamine sulfate (500 mg/kg) in addition to celecoxib, thrice a day. Treatment in both groups lasted 8 weeks. The serum levels of tumor necrosis factor α (TNF-α), interleukin-1 (IL-1), prostaglandin-2 (PGE2), malondialdehyde (MDA), and activity of superoxide dismutase (SOD) were assayed before and after treatment. Visual analogue scale (VAS), osteoarthritis index, Lysholm knee score scale (LKSS), and adverse reactions were also evaluated.Results: After treatment, total effectiveness was significantly higher in the study group (91.33 %) than in control group (71.67 %, p < 0.05). Serum TNF-α, IL-1 and PGE2 were significantly lesser in the glucosamine sulfate-treated patients than in control group (p < 0.05). The activity of SOD was significantly higher in glucosamine sulfate-exposed patients than control patients (p < 0.05). On the other hand, VAS and WOMAC scores were markedly lower in patients given glucosamine sulfate than in control patients (p < 0.05).Conclusion: The combination of celecoxib with glucosamine sulfate effectively reduces immune inflammatory response, oxidative stress damage, and joint pain associated with KOA.Keywords: Celecoxib, Glucosamine sulfate, Osteoarthritis, Inflammatory factors, Oxidative stres

    Adenovirus-mediated siRNA targeting Bcl-xL inhibits proliferation, reduces invasion and enhances radiosensitivity of human colorectal cancer cells

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Bcl-xL, an important member of anti-apoptotic Bcl-2 family, plays critical roles in tumor progression and development. Previously, we have reported that overexpression of Bcl-xL was correlated with prognosis of colorectal cancer (CRC) patients. The aim of this study was to investigate the association of Bcl-xL expression with invasion and radiosensitivity of human CRC cells.</p> <p>Methods</p> <p>RT-PCR and Western blot assays were performed to determine the expression of Bcl-xL mRNA and protein in CRC cells and normal human intestinal epithelial cell line. Then, adenovirus-mediated RNA interference technique was employed to inhibit the expression of Bcl-xL gene in CRC cells. The proliferation of CRC cells was analyzed by MTT and colony formation assay. The migration and invasion of CRC cells was determined by wound-healing and tranwell invasion assays. Additionally, the in vitro and in vivo radiosensitivity of CRC cells was determined by clonogenic cell survival assay and murine xnograft model, respectively.</p> <p>Results</p> <p>The levels of Bcl-xL mRNA and protein expression were significantly higher in human CRC cells than in normal human intestinal epithelial cell line. Ad/shBcl-xL could significantly reduce the expression of Bcl-xL protein in CRC cells. Also, we showed that adenovirus-mediated siRNA targeting Bcl-xL could significantly inhibit proliferation and colony formation of CRC cells. Ad/shBcl-xL could significantly suppress migration and invasion of CRC cells. Moreover, Ad/shBcl-xL could enhance in vitro and in vivo radiosensitivity of CRC cells by increasing caspase-dependent apoptosis.</p> <p>Conclusions</p> <p>Targeting Bcl-xL will be a promising strategy to inhibit the metastatic potential and reverse the radioresistance of human CRC.</p

    NCACO-score: An effective main-chain dependent scoring function for structure modeling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Development of effective scoring functions is a critical component to the success of protein structure modeling. Previously, many efforts have been dedicated to the development of scoring functions. Despite these efforts, development of an effective scoring function that can achieve both good accuracy and fast speed still presents a grand challenge.</p> <p>Results</p> <p>Based on a coarse-grained representation of a protein structure by using only four main-chain atoms: N, Cα, C and O, we develop a knowledge-based scoring function, called NCACO-score, that integrates different structural information to rapidly model protein structure from sequence. In testing on the Decoys'R'Us sets, we found that NCACO-score can effectively recognize native conformers from their decoys. Furthermore, we demonstrate that NCACO-score can effectively guide fragment assembly for protein structure prediction, which has achieved a good performance in building the structure models for hard targets from CASP8 in terms of both accuracy and speed.</p> <p>Conclusions</p> <p>Although NCACO-score is developed based on a coarse-grained model, it is able to discriminate native conformers from decoy conformers with high accuracy. NCACO is a very effective scoring function for structure modeling.</p

    Nisin and ε-polylysine combined treatment enhances quality of fresh-cut jackfruit at refrigerated storage

    Get PDF
    This study investigated the effects of nisin combined with ε-polylysine on microorganisms and the refrigerated quality of fresh-cut jackfruit. After being treated with distilled water (control), nisin (0.5 g/L), ε-polylysine (0.5 g/L), and the combination of nisin (0.1 g/L) and ε-polylysine (0.4 g/L), microporous modified atmosphere packaging (MMAP) was carried out and stored at 10 ± 1°C for 8 days. The microorganisms and physicochemical indexes were measured every 2 days during storage. The results indicated that combined treatment (0.1 g/L nisin, 0.4 g/L ε-polylysine) had the best preservation on fresh-cut jackfruit. Compared with the control, combined treatment inhibited microbial growth (total bacterial count, mold and yeast), reduced the weight loss rate, respiratory intensity, polyphenol oxidase and peroxidase activities, and maintained higher sugar acid content, firmness, and color. Furthermore, it preserved higher levels of antioxidant compounds, reduced the accumulation of malondialdehyde and hydrogen peroxide, thereby reducing oxidative damage and maintaining high nutritional and sensory qualities. As a safe application of natural preservatives, nisin combined with ε-polylysine treatment has great application potential in the fresh-cut jackfruit industry

    The hidden spin-momentum locking and topological defects in unpolarized light fields

    Full text link
    Electromagnetic waves characterized by intensity, phase, and polarization degrees of freedom are widely applied in data storage, encryption, and communications. However, these properties can be substantially affected by phase disorders and disturbances, whereas high-dimensional degrees of freedom including momentum and angular momentum of electromagnetic waves can offer new insights into their features and phenomena, for example topological characteristics and structures that are robust to these disturbances. Here, we discover and demonstrate theoretically and experimentally spin-momentum locking and topological defects in unpolarized light. The coherent spin is locked to the kinetic momentum except for a small coupling spin term, due to the simultaneous presence of transverse magnetic and electric components in unpolarized light. To cancel the coupling term, we employ a metal film acting as a polarizer to form some skyrmion-like spin textures at the metal/air interface. Using an in-house scanning optical microscopic system to image the out-of-plane spin density of the focused unpolarized vortex light, we obtained experimental results that coincide well with our theoretical predictions. The theory and technique promote the applications of topological defects in optical data storage, encryption, and decryption, and communications.Comment: 9 pages, 3 figures, 47 reference

    Genomic analysis uncovers prognostic and immunogenic characteristics of ferroptosis for clear cell renal cell carcinoma

    Get PDF
    In this study, the characteristic patterns of ferroptosis in clear cell renal cell carcinoma (ccRCC) were systematically investigated with the interactions between ferroptosis and the tumor microenvironment (TME). On the mRNA expression profiles of 57 ferroptosis-related genes (FRGs), three ferroptosis patterns were constructed, with distinct prognosis and immune cell infiltrations (especially T cells and dendritic cells). The high ferroptosis scores were characterized by poorer prognosis, increased T cell infiltration, higher immune and stromal scores, elevated tumor mutation burden, and enhanced response to anti-CTLA4 immunotherapy. Meanwhile, the low ferroptosis scores were distinctly associated with enhanced tumor purity and amino acid and fatty acid metabolism pathways. Following validation, the ferroptosis score was an independent and effective prognostic factor. Collectively, ferroptosis could be involved in the diverse and complex TME. Evaluation of the ferroptosis patterns may heighten the comprehension about immune infiltrations in the TME, assisting oncologists to generate individualized immunotherapeutic strategies
    corecore