Electromagnetic waves characterized by intensity, phase, and polarization
degrees of freedom are widely applied in data storage, encryption, and
communications. However, these properties can be substantially affected by
phase disorders and disturbances, whereas high-dimensional degrees of freedom
including momentum and angular momentum of electromagnetic waves can offer new
insights into their features and phenomena, for example topological
characteristics and structures that are robust to these disturbances. Here, we
discover and demonstrate theoretically and experimentally spin-momentum locking
and topological defects in unpolarized light. The coherent spin is locked to
the kinetic momentum except for a small coupling spin term, due to the
simultaneous presence of transverse magnetic and electric components in
unpolarized light. To cancel the coupling term, we employ a metal film acting
as a polarizer to form some skyrmion-like spin textures at the metal/air
interface. Using an in-house scanning optical microscopic system to image the
out-of-plane spin density of the focused unpolarized vortex light, we obtained
experimental results that coincide well with our theoretical predictions. The
theory and technique promote the applications of topological defects in optical
data storage, encryption, and decryption, and communications.Comment: 9 pages, 3 figures, 47 reference