349 research outputs found

    室内植物表型平台及性状鉴定研究进展和展望

    Get PDF
    Plant phenomics is under rapid development in recent years, a research field that is progressing towards integration, scalability, multi-perceptivity and high-throughput analysis. Through combining remote sensing, Internet of Things (IoT), robotics, computer vision, and artificial intelligence techniques such as machine learning and deep learning, relevant research methodologies, biological applications and theoretical foundation of this research domain have been advancing speedily in recent years. This article first introduces the current trends of plant phenomics and its related progress in China and worldwide. Then, it focuses on discussing the characteristics of indoor phenotyping and phenotypic traits that are suitable for indoor experiments, including yield, quality, and stress related traits such as drought, cold and heat resistance, salt stress, heavy metals, and pests. By connecting key phenotypic traits with important biological questions in yield production, crop quality and Stress-related tolerance, we associated indoor phenotyping hardware with relevant biological applications and their plant model systems, for which a range of indoor phenotyping devices and platforms are listed and categorised according to their throughput, sensor integration, platform size, and applications. Additionally, this article introduces existing data management solutions and analysis software packages that are representative for phenotypic analysis. For example, ISA-Tab and MIAPPE ontology standards for capturing metadata in plant phenotyping experiments, PHIS and CropSight for managing complicated datasets, and Python or MATLAB programming languages for automated image analysis based on libraries such as OpenCV, Scikit-Image, MATLAB Image Processing Toolbox. Finally, due to the importance of extracting meaningful information from big phenotyping datasets, this article pays extra attention to the future development of plant phenomics in China, with suggestions and recommendations for the integration of multi-scale phenotyping data to increase confidence in research outcomes, the cultivation of cross-disciplinary researchers to lead the next-generation plant research, as well as the collaboration between academia and industry to enable world-leading research activities in the near future

    Single-layer behavior and slow carrier density dynamic of twisted graphene bilayer

    Full text link
    We report scanning tunneling microscopy (STM) and spectroscopy (STS) of twisted graphene bilayer on SiC substrate. For twist angle ~ 4.5o the Dirac point ED is located about 0.40 eV below the Fermi level EF due to the electron doping at the graphene/SiC interface. We observed an unexpected result that the local Dirac point around a nanoscaled defect shifts towards the Fermi energy during the STS measurements (with a time scale about 100 seconds). This behavior was attributed to the decoupling between the twisted graphene and the substrate during the measurements, which lowers the carrier density of graphene simultaneously

    Clinical characteristics and mortality risk factors of mixed bacterial infections in hematopoietic stem cell transplantation recipients

    Get PDF
    Background and objectiveMixed bacterial infections (MBI) is one of the complications after hematopoietic stem cell transplantation (HSCT) and increases the risk of patient death. However, there are few reports specifically on this topic. The purpose of this study was to investigate the clinical characteristics and mortality risk factors of MBI in HSCT recipients.MethodsThe electronic medical records of patients undergoing HSCT were collected. The epidemiological features and antibiotic resistance of patients with and without MBI were compared. Logistic regression and Cox regression were used to identify the risk factors for MBI acquisition and death. R language was used to construct a prediction model for the overall survival of HSCT recipients with MBI.ResultsThe cumulative incidence of MBI was 6.3% and the mortality was 48.8%. Time interval from diagnosis to transplantation > 180 days (HR=2.059, 95% CI 1.042-4.069, P=0.038) and ICU admission after transplantation (HR=2.271, 95% CI 1.053-4.898, P=0.036) were independent risk factors for MBI acquisition. Engraftment period > 20 days (HR=2.273, 95% CI 1.028-5.027, P=0.043), continuous renal replacement therapy (HR=5.755, 95% CI 1.691-19.589, P=0.005) and septic shock (HR=4.308, 95% CI 2.085-8.901, P=0.000) were independent risk factors associated with mortality.ConclusionsMBI has become a serious problem that cannot be ignored after HSCT. It is urgent for clinicians to pay high attention to it and formulate reasonable monitoring and treatment plans to improve the prognosis of patients

    Loss of STAT1 in Bone Marrow-Derived Cells Accelerates Skeletal Muscle Regeneration

    Get PDF
    BACKGROUND: Skeletal muscle regeneration is a complex process which is not yet completely understood. Evidence suggested that the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway may have a role in myogenesis. In this study, we aim to explore the possible role of STAT1 in muscle regeneration. METHODS: Wild-type and STAT1 knockout mice were used in this study. Tibialis anterior muscle injury was conducted by cardiotoxin (CTX) injection. Bone marrow transplantation and glucocorticoid treatment were performed to manipulate the immune system of the mice. RESULTS: Muscle regeneration was accelerated in STAT1-/- mice after CTX injury. Bone marrow transplantation experiments showed that the regeneration process relied on the type of donor mice rather than on recipient mice. Levels of pro-inflammatory cytokines, TNFα and IL-1β, were significantly higher in STAT1-/- mice at 1 day and/or 2 days post-injury, while levels of anti-inflammatory cytokine, IL-10, were lower in STAT1-/- mice at 2 days and 3 days post-injury. Levels of IGF-1 were significantly higher in the STAT1-/- mice at 1 day and 2 days post-injury. Furthermore, the muscle regeneration process was inhibited in glucocorticoid-treated mice. CONCLUSIONS: Loss of STAT1 in bone marrow-derived cells accelerates skeletal muscle regeneration

    Strain Induced One-Dimensional Landau-Level Quantization in Corrugated Graphene

    Full text link
    Theoretical research has predicted that ripples of graphene generates effective gauge field on its low energy electronic structure and could lead to zero-energy flat bands, which are the analog of Landau levels in real magnetic fields. Here we demonstrate, using a combination of scanning tunneling microscopy and tight-binding approximation, that the zero-energy Landau levels with vanishing Fermi velocities will form when the effective pseudomagnetic flux per ripple is larger than the flux quantum. Our analysis indicates that the effective gauge field of the ripples results in zero-energy flat bands in one direction but not in another. The Fermi velocities in the perpendicular direction of the ripples are not renormalized at all. The condition to generate the ripples is also discussed according to classical thin-film elasticity theory.Comment: 4 figures, Phys. Rev.

    Electronic Structures of Graphene Layers on Metal Foil: Effect of Point Defects

    Full text link
    Here we report a facile method to generate a high density of point defects in graphene on metal foil and show how the point defects affect the electronic structures of graphene layers. Our scanning tunneling microscopy (STM) measurements, complemented by first principle calculations, reveal that the point defects result in both the intervalley and intravalley scattering of graphene. The Fermi velocity is reduced in the vicinity area of the defect due to the enhanced scattering. Additionally, our analysis further points out that periodic point defects can tailor the electronic properties of graphene by introducing a significant bandgap, which opens an avenue towards all-graphene electronics.Comment: 4 figure
    corecore