1,123 research outputs found

    Tailoring Accelerating Beams in Phase Space

    Get PDF
    An appropriate design of wavefront will enable light fields propagating along arbitrary trajectories thus forming accelerating beams in free space. Previous ways of designing such accelerating beams mainly rely on caustic methods, which start from diffraction integrals and only deal with two-dimensional fields. Here we introduce a new perspective to construct accelerating beams in phase space by designing the corresponding Wigner distribution function (WDF). We find such a WDF-based method is capable of providing both the initial field distribution and the angular spectrum in need by projecting the WDF into the real space and the Fourier space respectively. Moreover, this approach applies to the construction of both two- and three-dimensional fields, greatly generalizing previous caustic methods. It may therefore open up a new route to construct highly-tailored accelerating beams and facilitate applications ranging from particle manipulation and trapping to optical routing as well as material processing.Comment: 8 pages, 6 figure

    i2MapReduce: Incremental MapReduce for Mining Evolving Big Data

    Full text link
    As new data and updates are constantly arriving, the results of data mining applications become stale and obsolete over time. Incremental processing is a promising approach to refreshing mining results. It utilizes previously saved states to avoid the expense of re-computation from scratch. In this paper, we propose i2MapReduce, a novel incremental processing extension to MapReduce, the most widely used framework for mining big data. Compared with the state-of-the-art work on Incoop, i2MapReduce (i) performs key-value pair level incremental processing rather than task level re-computation, (ii) supports not only one-step computation but also more sophisticated iterative computation, which is widely used in data mining applications, and (iii) incorporates a set of novel techniques to reduce I/O overhead for accessing preserved fine-grain computation states. We evaluate i2MapReduce using a one-step algorithm and three iterative algorithms with diverse computation characteristics. Experimental results on Amazon EC2 show significant performance improvements of i2MapReduce compared to both plain and iterative MapReduce performing re-computation

    Spin-orbit interaction of light induced by transverse spin angular momentum engineering

    Get PDF
    We report the first demonstration of a direct interaction between the extraordinary transverse spin angular momentum in evanescent waves and the intrinsic orbital angular momentum in optical vortex beams. By tapping the evanescent wave of whispering gallery modes in a micro-ring-based optical vortex emitter and engineering the transverse spin state carried therein, a transverse-spin-to-orbital conversion of angular momentum is predicted in the emitted vortex beams. Numerical and experimental investigations are presented for the proof-of-principle demonstration of this unconventional interplay between the spin and orbital angular momenta, which could provide new possibilities and restrictions on the optical angular momentum manipulation techniques on the sub-wavelength scale. This phenomenon further gives rise to an enhanced spin-direction coupling effect in which waveguide or surface modes are unidirectional excited by incident optical vortex, with the directionality jointly controlled by spin-orbit states. Our results enrich the spin-orbit interaction phenomena by identifying a previously unknown pathway between the polarization and spatial degrees of freedom of light, and can enable a variety of functionalities employing spin and orbital angular momenta of light in applications such as communications and quantum information processing

    Semianalytical Solutions for Stream Depletion in Partially Penetrating Streams

    Get PDF

    Locality Preserving Projections for Grassmann manifold

    Full text link
    Learning on Grassmann manifold has become popular in many computer vision tasks, with the strong capability to extract discriminative information for imagesets and videos. However, such learning algorithms particularly on high-dimensional Grassmann manifold always involve with significantly high computational cost, which seriously limits the applicability of learning on Grassmann manifold in more wide areas. In this research, we propose an unsupervised dimensionality reduction algorithm on Grassmann manifold based on the Locality Preserving Projections (LPP) criterion. LPP is a commonly used dimensionality reduction algorithm for vector-valued data, aiming to preserve local structure of data in the dimension-reduced space. The strategy is to construct a mapping from higher dimensional Grassmann manifold into the one in a relative low-dimensional with more discriminative capability. The proposed method can be optimized as a basic eigenvalue problem. The performance of our proposed method is assessed on several classification and clustering tasks and the experimental results show its clear advantages over other Grassmann based algorithms.Comment: Accepted by IJCAI 201
    corecore