We report the first demonstration of a direct interaction between the
extraordinary transverse spin angular momentum in evanescent waves and the
intrinsic orbital angular momentum in optical vortex beams. By tapping the
evanescent wave of whispering gallery modes in a micro-ring-based optical
vortex emitter and engineering the transverse spin state carried therein, a
transverse-spin-to-orbital conversion of angular momentum is predicted in the
emitted vortex beams. Numerical and experimental investigations are presented
for the proof-of-principle demonstration of this unconventional interplay
between the spin and orbital angular momenta, which could provide new
possibilities and restrictions on the optical angular momentum manipulation
techniques on the sub-wavelength scale. This phenomenon further gives rise to
an enhanced spin-direction coupling effect in which waveguide or surface modes
are unidirectional excited by incident optical vortex, with the directionality
jointly controlled by spin-orbit states. Our results enrich the spin-orbit
interaction phenomena by identifying a previously unknown pathway between the
polarization and spatial degrees of freedom of light, and can enable a variety
of functionalities employing spin and orbital angular momenta of light in
applications such as communications and quantum information processing