243 research outputs found

    Change is Everywhere: Single-Temporal Supervised Object Change Detection in Remote Sensing Imagery

    Full text link
    For high spatial resolution (HSR) remote sensing images, bitemporal supervised learning always dominates change detection using many pairwise labeled bitemporal images. However, it is very expensive and time-consuming to pairwise label large-scale bitemporal HSR remote sensing images. In this paper, we propose single-temporal supervised learning (STAR) for change detection from a new perspective of exploiting object changes in unpaired images as supervisory signals. STAR enables us to train a high-accuracy change detector only using \textbf{unpaired} labeled images and generalize to real-world bitemporal images. To evaluate the effectiveness of STAR, we design a simple yet effective change detector called ChangeStar, which can reuse any deep semantic segmentation architecture by the ChangeMixin module. The comprehensive experimental results show that ChangeStar outperforms the baseline with a large margin under single-temporal supervision and achieves superior performance under bitemporal supervision. Code is available at https://github.com/Z-Zheng/ChangeStarComment: ICCV 202

    Cryptanalysis of LU Decomposition-based Key Pre-distribution Scheme for Wireless Sensor Networks

    Get PDF
    S. J. Choi and H. Y. Youn proposed a key pre-distribution scheme for Wireless Sensor Networks based on LU decomposition of symmetric matrix, and later many researchers did works based on this scheme. Nevertheless, we find a mathematical relationship of L and U matrixes decomposed from symmetric matrix, by using which we can calculate one matrix from another regardless of their product -- the key matrix K. This relationship would profoundly harm the secure implementation of this decomposition scheme in the real world. In this paper, we first present and prove the mathematical theorem. Next we give samples to illustrate how to break the networks by using this theorem. Finally, we state the conclusion and some directions for improving the security of the key pre-distribution scheme

    Comparison of fluorescence biosensors and whole-cell patch clamp recording in detecting ACh, NE, and 5-HT

    Get PDF
    The communication between neurons and, in some cases, between neurons and non-neuronal cells, through neurotransmission plays a crucial role in various physiological and pathological processes. Despite its importance, the neuromodulatory transmission in most tissues and organs remains poorly understood due to the limitations of current tools for direct measurement of neuromodulatory transmitters. In order to study the functional roles of neuromodulatory transmitters in animal behaviors and brain disorders, new fluorescent sensors based on bacterial periplasmic binding proteins (PBPs) and G-protein coupled receptors have been developed, but their results have not been compared to or multiplexed with traditional methods such as electrophysiological recordings. In this study, a multiplexed method was developed to measure acetylcholine (ACh), norepinephrine (NE), and serotonin (5-HT) in cultured rat hippocampal slices using simultaneous whole-cell patch clamp recordings and genetically encoded fluorescence sensor imaging. The strengths and weaknesses of each technique were compared, and the results showed that both techniques did not interfere with each other. In general, genetically encoded sensors GRABNE and GRAB5HT1.0 showed better stability compared to electrophysiological recordings in detecting NE and 5-HT, while electrophysiological recordings had faster temporal kinetics in reporting ACh. Moreover, genetically encoded sensors mainly report the presynaptic neurotransmitter release while electrophysiological recordings provide more information of the activation of downstream receptors. In sum, this study demonstrates the use of combined techniques to measure neurotransmitter dynamics and highlights the potential for future multianalyte monitoring

    Determination of key enzymes for threonine synthesis through in vitro metabolic pathway analysis

    Get PDF
    Figure S1. The pathway flux (J) in the in vitro system when one enzyme concentration was increased. (A) The pathway flux when purified ThrA was added to the crude enzyme extract. (B) The pathway flux when purified Asd was added to the crude enzyme extract. (C) The pathway flux when purified ThrB was added to the crude enzyme extract. (D) The pathway flux when purified ThrC was added to the crude enzyme extract

    Heat stress exposure cause alterations in intestinal microbiota, transcriptome, and metabolome of broilers

    Get PDF
    IntroductionHeat stress can affect the production of poultry through complex interactions between genes, metabolites and microorganisms. At present, it is unclear how heat stress affects genetic, metabolic and microbial changes in poultry, as well as the complex interactions between them.MethodsThus, at 28  days of age a total of 200 Arbor Acres broilers with similar body weights were randomly divided into the control (CON) and heat stress treatment (HS). There were 5 replicates in CON and HS, respectively, 20 per replication. From the 28–42  days, the HS was kept at 31 ± 1°C (9:00–17:00, 8 h) and other time was maintained at 21 ± 1°C as in the CON. At the 42nd day experiment, we calculated the growth performance (n = 8) of broilers and collected 3 and 6 cecal tissues for transcriptomic and metabolomic investigation and 4 cecal contents for metagenomic investigation of each treatment.Results and discussionThe results indicate that heat stress significantly reduced the average daily gain and body weight of broilers (value of p < 0.05). Transcriptome KEGG enrichment showed that the differential genes were mainly enriched in the NF-kB signaling pathway. Metabolomics results showed that KEGG enrichment showed that the differential metabolites were mainly enriched in the mTOR signaling pathway. 16S rDNA amplicon sequencing results indicated that heat stress increased the relative abundance of Proteobacteria decreased the relative abundance of Firmicutes. Multi-omics analysis showed that the co-participating pathway of differential genes, metabolites and microorganisms KEGG enrichment was purine metabolism. Pearson correlation analysis found that ornithine was positively correlated with SULT1C3, GSTT1L and g_Lactobacillus, and negatively correlated with CALB1. PE was negatively correlated with CALB1 and CHAC1, and positively with g_Alistipes. In conclusion, heat stress can generate large amounts of reactive oxygen and increase the types of harmful bacteria, reduce intestinal nutrient absorption and antioxidant capacity, and thereby damage intestinal health and immune function, and reduce growth performance indicators. This biological process is manifested in the complex regulation, providing a foundational theoretical basis for solving the problem of heat stress
    • …
    corecore