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Heat stress exposure cause 
alterations in intestinal microbiota, 
transcriptome, and metabolome 
of broilers
Xuan Liu , Zhenhua Ma , Yanfei Wang , Hao Jia , Zheng Wang * and 
Lihuan Zhang *

Shanxi Key Lab. for the Modernization of TCVM, College of Life and Science, Shanxi Agricultural 
University, Taigu, China

Introduction: Heat stress can affect the production of poultry through complex 
interactions between genes, metabolites and microorganisms. At present, it is unclear 
how heat stress affects genetic, metabolic and microbial changes in poultry, as well 
as the complex interactions between them.

Methods: Thus, at 28  days of age a total of 200 Arbor Acres broilers with similar 
body weights were randomly divided into the control (CON) and heat stress 
treatment (HS). There were 5 replicates in CON and HS, respectively, 20 per 
replication. From the 28–42  days, the HS was kept at 31 ± 1°C (9:00–17:00, 8 h) and 
other time was maintained at 21 ± 1°C as in the CON. At the 42nd day experiment, 
we calculated the growth performance (n = 8) of broilers and collected 3 and 6 cecal 
tissues for transcriptomic and metabolomic investigation and 4 cecal contents for 
metagenomic investigation of each treatment.

Results and discussion: The results indicate that heat stress significantly reduced the 
average daily gain and body weight of broilers (value of p < 0.05). Transcriptome KEGG 
enrichment showed that the differential genes were mainly enriched in the NF-kB 
signaling pathway. Metabolomics results showed that KEGG enrichment showed that 
the differential metabolites were mainly enriched in the mTOR signaling pathway. 16S 
rDNA amplicon sequencing results indicated that heat stress increased the relative 
abundance of Proteobacteria decreased the relative abundance of Firmicutes. 
Multi-omics analysis showed that the co-participating pathway of differential genes, 
metabolites and microorganisms KEGG enrichment was purine metabolism. Pearson 
correlation analysis found that ornithine was positively correlated with SULT1C3, 
GSTT1L and g_Lactobacillus, and negatively correlated with CALB1. PE was negatively 
correlated with CALB1 and CHAC1, and positively with g_Alistipes. In conclusion, heat 
stress can generate large amounts of reactive oxygen and increase the types of harmful 
bacteria, reduce intestinal nutrient absorption and antioxidant capacity, and thereby 
damage intestinal health and immune function, and reduce growth performance 
indicators. This biological process is manifested in the complex regulation, providing 
a foundational theoretical basis for solving the problem of heat stress.
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1. Introduction

Chicken is the second largest type of meat product in China, except for pork. The annual 
sales of broilers in China can reach 10.5 billion, and the per capita consumption has been 
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increasing year by year. Compared to laying hens, broilers can provide 
humans with more high-quality dietary protein and meat products 
(Resnyk et al., 2017). Heat stress is one of the biggest challenges facing 
global animal husbandry. The increase in ambient temperature and 
humidity will affect the production of animals in summer and will 
cause economic losses in severe cases (Salem et al., 2022). Heat stress 
causes the high mortality rate and severe economic losses estimated 
at 240 million United States dollars per year in the poultry sector 
(St-Pierre et al., 2003), representing, for example, about 7% of total 
HS-caused losses in the French livestock industry in 2003 (Nardone 
et al., 2010). According to the time of heat stress, it can be divided into 
acute heat stress (<7 days) and chronic heat stress (≥7 days); According 
to the temperature of stress treatment, it can be divided into cyclic 
heat stress and sustained heat stress (Gonzalez-Esquerra and Leeson, 
2006). Research has shown that acute heat stress can cause a heat 
shock response, leading to rapid initiation of heat shock protein 
synthesis and rapid changes in gene expression, while chronic heat 
stress can cause larger scale changes (Xie et al., 2014). In addition, Xie 
et  al. (2015) reported that chronic heat stress can lead to tissue 
damage. Research has found that the cyclic heat stress pattern is more 
in line with the characteristics of summer temperature and closer to 
the actual living environment (Al Qaisi et al., 2022). Heat stress can 
affect intestinal microflora’s activity and stimulate the hypothalamus’s 
feeding center to reduce its excitability, leading to the decline of broiler 
growth performance and even death (Wang, 2013). In addition, 
broilers will respond to changes in the external environment by 
adjusting their metabolic levels, which can detect changes in gene, 
metabolite and microorganism levels through behavioral changes and 
the use of transcriptome, metabolome and 16S rDNA amplicon 
sequencing technology (Jastrebski et al., 2017).

It has revealed the influence of heat stress on broilers’ cecum by 
the transcriptome, metabolome and 16S rDNA amplicon 
technology. Transcriptome sequencing (RNA-Seq) reflects the 
expression of a specific cell or tissue gene and has the advantage of 
high sensitivity. RNA-Seq has been successfully applied to study the 
molecular basis of complex traits, such as feed efficiency and 
myopathy, and evaluate the molecular response to nutritional 
therapy and important aspects of immunity and disease resistance 
(Zampiga et al., 2018). In addition, in terms of heat stress, RNA-Seq 
analysis was used to identify key genes that respond to the heat 
stress induced volatilization in laying hens, such as PDK4 and FGA 
(Wang et  al., 2021). Transcriptome analysis identified potential 
target genes, especially those involved in cell migration and immune 
signaling responses to heat stress, which can inform future research 
on heat stress in broilers and could prove useful for improving 
disease resistance (Monson et  al., 2018). Metabolomics is a 
sequencing technology that studies the body’s physiological changes 
and pathological characteristics from a dynamic perspective 
through the qualitative and quantitative determination of 
metabolites (Nicholson et al., 1999). It can build a direct correlation 
between metabolites and biological phenotypes, dynamically track 
and analyze the metabolites of animal bodies, help to analyze the 
relationship between phenotypes and genetics, environmental and 
other factors, and provide a basis for the improvement and breeding 
of economic traits. Metabolomics is widely used to understand the 
changes in organism metabolism, such as metabolism, sugar, lipid, 
amino acid metabolism, and meat quality evaluation (Zhang 
Y. et al., 2023; Zhang F. et al., 2023; Zhang X. et al., 2023). Zampiga 
et  al. (2021) found that chronic heat stress could regulate the 

changes of metabolites in breast muscle and plasma of broilers by 
metabolome, and found metabolites that might play an important 
role in regulating Energy homeostasis of the body. According to 
metabolomic analysis, heat stress has caused to changes in serum 
lipid metabolism of broilers. It is determined that heat stress can 
reduce the content of lysophosphatidylcholine and increase the 
content of phosphatidylcholine (Guo et al., 2021a). The 16S rDNA 
amplicon sequencing technology can analyze microbial 
communities to obtain information on community structure, 
differences and functions. It is also widely used in the poultry 
industry, revealing the interaction between microbial communities 
such as the gut, animal reproduction, growth and development, 
nutritional health, environmental factors, immunity and disease 
treatment (Pan and Yu, 2014). Emami et al. (2022) reported that 
using microbial amplicon analysis, it was found that heat stress can 
affect the diversity and composition of gut microbiota in broilers, 
which can provide a basis for developing nutritional strategies to 
maintain gut microbiota balance and alleviate the negative effects 
of heat stress on performance and health of broilers. In addition, 
the multi-omics analysis has shown unique advantages in revealing 
the underlying molecular regulatory mechanisms. For example, 
integrated analysis of transcriptome and metabolome was used to 
determine the critical amino acid metabolic pathway to improve 
duck eggs (Yan et al., 2023) and lipopolysaccharides could induce 
the immune stress pathway in broilers (Bi et al., 2022). Hubbard 
et  al. (2019) reported that the combination of RNA-Seq and 
metabolomic data can identify new changes in gene regulation of 
broilers affected by heat stress, which reflect changes in pathways 
that affect metabolite levels. Integrated analysis of metabolome and 
microbiome has determined that heat stress can increase the relative 
abundance of harmful microbes in the cecum of broilers and reduce 
health-related metabolites such as L-malic acid, which can provide 
a basis for the impact of heat stress on physiological changes and 
intestinal health in broilers (Liu et al., 2022, 2022a,b).

The intestine is a sensitive part of heat stress and an important 
organ for nutrient absorption and immune regulation in poultry, 
making it crucial for poultry production (Deng et  al., 2023). The 
cecum is the broiler gastrointestinal tract’s most diverse area of 
microbes and various microbes are crucial in improving growth 
performance and maintaining physical health (Luo et  al., 2021). 
Previous studies mainly explored the effects of heat stress on broiler 
intestines from a single omics perspective, including transcriptome, 
metabolomics, and microbiome (Dridi et al., 2022; Kim et al., 2022; 
Zhang Y. et al., 2023; Zhang F. et al., 2023; Zhang X. et al., 2023). 
However, very few studies have comprehensively revealed the heat-
stress impact on broilers’ guts. Therefore, this experiment conducted 
chronic heat stress treatment on broilers and analyzed the effects of 
heat stress on the cecum of broilers at the genetic, metabolic, and 
microbial levels to provide a theoretical basis for subsequent research.

2. Materials and methods

2.1. Animal ethics

The animal use protocol has been reviewed and approved by the 
Institutional Animal Care and Use Committee of Shanxi Agricultural 
University. All procedures involving the handling, management, and 
healthcare of live poultry follow the regulations for the use of 
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experimental animals for scientific purposes, and are implemented in 
accordance with the Shanxi Agricultural University Ethics Committee 
(SXAU-EAW-2021C0630) in China.

2.2. Experiment design and animal feeding

Three hundred 1-day-old Arbor Acres broilers were purchased 
from Xiangfeng Poultry industry, Taigu county, Shanxi province. On 
the 28th day, 200 broilers with similar weights were selected and 
randomly divided into a control group (CON) and a heat stress 
treatment group (HS). There were 5 replicates in each group and had 
20 broilers of each replication. All broilers were raised in a three-layer 
vertical cage, vaccinated as required, and regularly cleaned and 
disinfected the chicken house. The feeding period was divided into 
1–21 days and 22–42 days. The trial period was 14 days. Feeding at 8:00 
and 19:00 every day and ad libitum access to water and eating, the 
broilers were exposed to light for 23 h and dark for 1 h every day, and 
the temperature of the brood was 34 ± 1°C at 1–3 days, 32 ± 1°C at 
4–7 days. After that, it declined by 1°C every day until it was kept at a 
constant temperature of 21 ± 1°C. On the 28th day, the broilers in the 
HS were subjected to chronic heat stress treatment until the end of the 
test. That was, the feeding temperature was raised to 33 ± 1°C at 9:00–
17:00 daily, the heat stress treatment lasted for 8 h, and the rest of the 
time was kept at the same temperature as the control group (21 ± 1°C). 
The experimental broilers were fed and managed by the national 
standard GB/T 19664–2005 production technique criterion for 
commercial broiler. Each group was fed with corn-soybean meal basal 
diet. The corn-soybean meal formula was prepared according to the 
National Research Council recommendations. Analyzed nutrient 
concentrations in the experimental diets are reported in 
Supplementary Table S1.

2.3. Growth performance and sample 
collection

Prior to slaughter, broilers were prohibited from eating for 10 h 
and their body weight was recorded. Recorded the eating feed of 
broilers on time and calculated the average daily feed intake (ADFI), 
average daily gain (ADG), and feed conversion rate (FCR = ADFI/
ADG) of each group of broilers at the end of the experiment. The 
original data of growth performance in Supplementary Table S2.

We took cecal samples from each group and washed with pre-cooled 
saline physiological solution. Then we quickly cooled them in liquid 
nitrogen, stored at −80°C fridge, and shipped three and six 2 cm2 cecal 
samples to Shanghai Meiji Biomedical Technology Co., Ltd. for 
transcriptome and metabolome sequencing, respectively. In addition, four 
2 cm2 samples of cecal contents were also taken from each group and sent 
to Novogene Co., Ltd. for 16S rDNA amplicon sequencing.

2.4. Transcriptome analysis

2.4.1. Extraction of total RNA
Trizol reagent was used to extract caecum tissue. The 

Nanodrop 2000 and Agilent 2100 bioanalyzers then detected total 
RNA, purity and RIN (RNA integrity number).

2.4.2. Construction of the cDNA library
Took 1 μg of qualified total RNA sample, enriched the mRNA with 

magnetic beads, broke it up into 300 bp fragments, reversed 
transcribed the mRNA fragments into cDNA, and synthesized double-
stranded cDNA. Added End Repair Mix to complement the end of the 
double-stranded cDNA from the sticky end to the flat end, added a 
tail at the 3′ end for ligating the adapter and obtained the final cDNA 
library after PCR amplification and purification. And then the cDNA 
library had been sequenced by the Illumina Novaseq 6000 platform.

2.4.3. Alignment with the reference genome
In order to ensure data quality, the original data was filtered before 

analysis, and the low-quality data was filtered out to reduce the 
interference caused by invalid data to obtain clean reads. The quality-
controlled clean reads were compared with the Ensemble reference 
genome (reference genome version: GRCg6a)1 to obtain mapped reads 
for subsequent transcript assembly and expression calculation. In the 
quantitative analysis of genes using the REEM software, the 
quantitative indicator was TPM (Transcripts per kilobase million).

2.4.4. Gene clustering analysis and screening of 
differential genes

Genes were clustered to observe the effect of heat stress on broiler 
cecum genes. DESeq2 (Version 1.24.0) software was used for gene 
expression differential analysis to |Log2 Foldchange| ≥ 1 and 
Padjust < 0.05 were used as criteria for screening for differential genes. 
The multiple test correction method is BH. The detailed information 
of differential genes can be seen in Supplementary Table S3.

2.4.5. Differential genes function enrichment
In order to analyze the function of differentially expressed genes, 

we  conducted GO and KEGG functional enrichment analysis on 
differentially expressed genes using Goatools (Version 0.6.5) and R 
(Version 1.6.2). Padjust < 0.05 was used to evaluate significant 
enrichment of the GO function and KEGG enrichment analysis. The 
multiple test correction method is BH.

2.4.6. Real-time PCR verification
Four differential genes (PDK4, CHAC1, EOMES and SULT1C3) 

were randomly chosen for the validation tests. β-actin was selected as 
the reference gene. Using the Primer Premier 5.0 to design primers, 
the primer information is shown in Supplementary Table S4. The 
primers were synthesized by Sangon Biotech (Shanghai) Co., Ltd. The 
relative expression of the different genes between the groups was 
calculated by the 2−∆∆CT method, and the GraphPad Prism 8 software 
was used to plot.

2.5. Metabolome analysis

2.5.1. Sample pretreatment
Accurately weighed 50 mg of the cecal sample in a 2 mL centrifuge 

tube. Added 400 μl of methanol extract containing 0.02 mg/ml internal 
standard (2-Chloro-L-phenylalanine) and grinded at 50 Hz and 

1 http://asia.ensembl.org/Gallus_gallus/Info/Index
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−10°C for 6 min. Extracted at 5°C and 40 kHz for 30 min by 
ultrasound. Left a −20°C for 30 min. Centrifugation at 13,000 g, 4°C 
for 15 min, and sampling an equal amount of supernatant for 
machine analysis.

2.5.2. LC–MS analysis process
The instrumental analysis platform used in this test was LC–MS 

(Thermo Scientific, UHPLC-Q Exactive HF-X), and the column was 
ACQUITY UPLC HSS T3 (100 mm × 2.1 mm i.d., 1.8 μm, Waters, 
Milford, United States), chromatographic separation conditions were 
column temperature 40°C, flow rate 0.40 ml/min, injection volume of 
2 μl. The flow component A was 95% water +5% acetonitrile (containing 
0.1% formic acid), and mobile phase B was 47.5% acetonitrile +47.5% 
isopropanol +5% water (containing 0.1% formic acid).

The primary mass spectrometry condition was that the sample 
was ionized by electrospray. That was, the positive mode spray voltage 
was 3,500 V, and the negative mode spray voltage was 2,800 V. The 
mass spectrometry signal was acquired in positive and negative ion 
scanning modes, and the scanning range was 70–1,050 m/z. Heating 
temperature 400°C, capillary temperature 320°C, sheath flow velocity 
40 arb, auxiliary airflow rate 10 arb, S-Lens voltage 50 V. The resolution 
MS2 was 17,500, and the Full MS was 70,000.

2.5.3. Data preprocessing
ProgenesisQi (Waters corporation, Milford, United  States) 

software was used to identify and integrate peaks. The result was a data 
matrix that can be used for subsequent analysis. MS and MS/MS mass 
spectrometry information were then combined with metabolic 
databases HMDB and Metlin to match while identifying metabolites 
according to secondary mass spectrometry matching scores, 
normalizing and log-converting data to Log10.

2.5.4. Sample variability comparative analysis
To analyze the differences between groups, we  conducted 

principal component analysis (PCA) and partial least squares 
discrimination analysis (PLS-DA) analysis. PCA analysis used the data 
conversion type as unit variance conversion, with a confidence level 
of 0.95. PLS-DA analysis adopted the PLS-DA data conversion type of 
pareto conversion. The PLS-DA confidence level was 0.95, and the 
number of replacements was 200.

2.5.5. Screening differential metabolites and 
KEGG enrichment

The metabolites obtained above were screened for differential 
metabolites by projecting VIP >1, and FDR < 0.05 as screening criteria. 
The software used was R (Version 1.6.2). Perform compound 
classification analysis on differential metabolites. To further clarify the 
functions of differential metabolites, they were compared to the 
KEGG database and significantly enriched metabolic pathways were 
screened by setting Padjust < 0.05 as the standard. The multiple test 
correction method is BH.

2.6. 16S rDNA amplicon analysis

2.6.1. Microbial DNA extraction and 16S rDNA 
amplicon sequencing

Microbial genomic DNA was extracted by the CTAB method, 
and then the purity and concentration of extracted DNA were 

detected on 1% agarose gel. PCR amplification was performed using 
diluted genomic DNA as a template. The primers for the 16S V34 
region were 341F (CCTAYGGRBGCACAG) and 806R 
(GGACTACNNGGTATCTAAT; Xiao et al., 2022). PCR products 
were detected by agarose gel electrophoresis with a concentration 
of 2%, and the target bands were recovered using the gel recovery 
kit provided by Qiagen Company. Using NEBNext® Ultra™ IIDNA 
Library Prep Kit was used for library construction, and the 
constructed library was subjected to Qubit and qPCR quantification. 
After the library was qualified, used the NovaSeq 6000 for machine 
sequencing. After sequencing, used the DADA2 module in the 
QIIME2 software to denoise and filter out sequences with an 
abundance less than 5 in order to obtain the final ASVs (Amplicon 
sequence variables). Subsequently, the classify-sklearn module in 
QIIME2 software (qiime2-2020.6) was used to compare the 
obtained ASVs with the database to obtain species information for 
each ASV.

2.6.2. Bioinformatics analysis
Used the QIIME2 software to calculate the Shannon, Simpson, 

Chao1, and ACE indexes and used the Simpson exponent as a 
reference to draw a rarefaction curve. The composition of 
microorganisms was presented using Venn plots, PCA plots, top 10 
phylum horizontal species relative abundance histograms, and top 10 
genus horizontal species relative abundance histograms. We used the 
LEfSe software and set a threshold of 4 (LDA = 4) for significant 
difference species analysis. In addition, to study the function of 
microorganisms, we  conducted PICRUSt functional prediction 
analysis and compared it to the KEGG database. The above are all 
using software R (Version 3.5.3).

2.7. Multi-omics analysis

The Pearson correlation coefficient was used to calculate the 
correlation between differential genes and metabolites, differential 
genes and ASVs, and differential metabolites and ASVs to obtain the 
interaction relationship between genes, metabolites, and 
microorganisms. In addition, by conducting KEGG co-enrichment 
analysis on differential genes and metabolites, the function of genes 
and metabolites co-participating in the pathway can be clarified. By 
comparing the KEGG differential metabolic pathway predicted by 
PICRUST function with the KEGG pathway enriched by 
metabolomics, it was found that co-participating pathways can clarify 
the contribution of microorganisms to metabolic products.

2.8. Data analysis

Using the SPSS 26.0 software, the value of p of 42 days body weight 
is calculated by a mixed model, with the impact of replication as a 
random variable and grouping as a fixed factor to evaluate the impact 
of grouping on body weight. Excluded the impact of replication on 
selected experimental broilers through mixed model calculations, the 
independent sample t-test was used to evaluate the significance in the 
subsequent comparison between the two groups of data. The α 
diversity index was showed using GraphPad Prism 8 software. The 
value of p is obtained through calibration using the “BH” method. The 
value of p < 0.05 is considered statistically significant.

https://doi.org/10.3389/fmicb.2023.1244004
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3. Results

3.1. Growth performance

Using the mixed model to evaluate the impact of replication on 
42 days body weight by using replication as a random variable and 
grouping as a fixed effect. We obtained that replication did not have a 
significant impact on body weight (value of p > 0.05). Therefore, this 
eliminates the influence of random variables on the data. From 
Table 1, it can be seen that compared with the control group, the 
broilers of the HS showed a significant decrease in body weight and 
ADG at 42 days (value of p < 0.05), while there were no significant 
changes in ADFI and FCR (value of p > 0.05).

3.2. Transcriptome results

3.2.1. Quality control and reference genome 
comparison

Table 2 shows that the percentage of Q30 bases obtained by quality 
control is above 93.36%, Q20 is above 97.45, and the average error rate 
of sequencing bases is below 0.1%. The number of clean reads on the 
genome accounted for 88.78–90.53%, the alignment rate of multiple 
alignment positions on the reference sequence was 2.26–2.74%, and 
the alignment rate of the unique alignment position on the reference 
sequence was 86.24–87.88%. These results indicate that sequencing 
results had a low error rate and a high alignment rate of genes on the 
reference genome, which can be used for subsequent analysis.

3.2.2. Gene clustering analysis and screening of 
differential genes

From Figure 1A, it can be seen that there is a significant change in 
the gene expression level between the CON and HS. According to the 
screening criteria, we screened 96 differential genes, of which 78 were 
up-regulated and 18 were down-regulated (Figure 1B).

3.2.3. Go enrichment analysis
We conducted GO enrichment analysis on differential genes. 

Figure  1C shows the top  30 GO metabolic entries 
(Supplementary Table S5). It can be seen from Figure 1C that the 
enrichment of differential genes in biological process (BP) mainly 

included immune system process, immune effector process and 
complement activation. The main activities involved in the enrichment 
of cellular components (CC) and molecular function (MF) were 
extracellular region, extracellular space, collagen-containing 
extracellular matrix, calcium-dependent protein binding and enzyme 
inhibitor activity.

3.2.4. KEGG enrichment analysis
To further investigate the function of the differential genes, 

we  conducted the KEGG enrichment analysis 
(Supplementary Table S6). Figure 1D shows the top 20 differential 
pathways. Among them, the NF-kB signaling pathway, and cellular 
senescence were related to regulating heat stress. In addition, although 
the enriched calcium signaling pathway and intestinal immune 
network for IgA production are not shown in Figure 1D, they are also 
enriched and crucial in regulating heat stress.

3.2.5. qPCR verification
The results of Figure 1E show that the qPCR results are consistent 

with the trend of transcriptome results and have a high similarity, 
indicating that the transcriptome data are reliable and accurate.

3.3. Metabolome results

3.3.1. PCA and PLS-DA analysis
For the analysis of anions and cations, Figures 2A,B show the 

distribution of cations and anions between PCA analysis groups, 
respectively, and it could be found that the differences between groups 
were significant. Although PCA analysis can reveal differences 
between sample groups, this algorithm has limitations. Therefore, to 
further verify the differences between groups, we selected the PLS-DA 
test (Figures  2C–F). Figures  2C,E were the cation and anion 
distributions, respectively, and it could be found that the differences 
between the groups were evident. The distance of the samples in the 
group was closer. At the same time, the PLS-DA replacement test was 
carried out. And Figures 2D,F were, respectively, cation and anion 
replacement test results. The R2 and Q2 of the anion and cation were 
0.9182, −0.1776, 0.9093 and −0.6454, respectively. Theoretically, the 
closer R2 and Q2 were to 1, the more stable the model, the better the 
prediction ability, and the high confidence of the results. The above 
results indicated that metabolite differences between were groups 
were significant.

3.3.2. Screen for differential metabolites
Six hundred and nineteen differential metabolites were screened, 

of which 47 metabolites of known structures were screened 
(Supplementary Table S7). Figure 3A shows that 13 metabolites of 
known structures were up-regulated (4 and 9 anionic and cation 
metabolites, respectively), and 34 metabolites were down-regulated 
(19 and 15 anionic and cation metabolites, respectively) among the 
metabolites of known structures.

3.3.3. Differential metabolic species class analysis
The superclass classification hierarchy classifies the distribution of 

differential metabolites in the HMDB database, and Figure 3B shows 
the HMDB classifications. Among them, organic acids and derivatives 
accounted for 27.78%, lipids and lipid-like molecules accounted for 

TABLE 1 Effects of heat stress on growth performance of broilers.

Index1 CON HS value of 
p

42d BW, g 2911.243 ± 7.076 2658.173 ± 14.016 0.001

ADG, g/bird 86.191 ± 1.991 73.547 ± 1.823 0.001

ADFI, g/bird 168.630 ± 6.037 151.144 ± 5.828 0.084

FCR, g/g 1.963 ± 0.079 2.071 ± 0.117 0.456

BW, body weight; ADG, average daily gain; ADFI, average daily feed intake; FCR, feed 
conversion rate.1CON = broilers were raised in an environment of 21 ± 1°C; HS = broilers 
were raised in an environment of 33 ± 1°C, treated with heat stress for 8 h per day, and 
maintained an appropriate temperature (21 ± 1°C) for the other time. All measurements were 
expressed as mean ± SEM (n = 8). The value of p of 42 days BW is calculated by a mixed 
model, with the impact of replication as a random variable and grouping as a fixed factor to 
evaluate the impact of grouping on body weight. The p-values of ADG, ADFI and FCR is 
calculated by the independent sample t-test. And all p-values have been corrected using the 
“BH” method.
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25.00%, organoheterocyclic compounds accounted for 16.67%, 
nucleosides, nucleotides, and analogues accounted for 16.67%, organic 
oxygen compounds accounted for 8.33%, and benzenoids accounted 
for 5.66%.

3.3.4. KEGG enrichment analysis
A total of 19 KEGG pathways are enriched 

(Supplementary Table S8; Figure 3C). We found that the number of 
metabolites enriched in the purine metabolism pathway was the 

TABLE 2 Sequencing data and alignment information.

Sample1 CON1 CON2 CON3 HS1 HS2 HS3

Group Control Control Control Heat stress Heat stress Heat stress

Raw reads 54,502,890 50,813,730 50,960,416 46,432,436 45,547,564 45,510,350

Raw bases, Gb 8,229,936,390 7,672,873,230 7,695,022,816 7,859,225,537 7,323,250,044 7,434,083,069

Clean reads 53,687,106 50,000,698 50,264,114 45,626,058 44,874,338 44,849,600

Clean bases, Gb 7,008,919,888 6,999,778,952 6,571,921,358 6,737,791,062 6,752,081,444 6,331,100,604

Q20, % 97.58 97.54 97.61 97.45 97.60 97.53

Q30, % 93.61 93.51 93.64 93.36 93.66 93.46

Error rate, % 0.0257 0.0258 0.0257 0.0258 0.0259 0.0256

Total mapped, % 89.20 89.65 90.22 88.78 90.53 90.51

Multiple mapped, % 2.26 2.66 2.34 2.53 2.74 2.72

Uniquely mapped, 

%

86.94 86.99 87.88
86.24 87.79 87.79

1CON = broilers were raised in an environment of 21 ± 1°C; HS = broilers were raised in an environment of 33 ± 1°C, treated with heat stress for 8 h per day, and maintained an appropriate 
temperature (21 ± 1°C) for the other time.

FIGURE 1

Transcriptome analysis and qPCR validation results. (A) Gene clustering heatmap, (B) volcano map analysis of differential genes, up, down and nosig 
stand for up-regulated, down-regulated and insignificant differentially insignificant genes, respectively. The criteria for screening differential genes are 
|Log2 Foldchange |  ≥  1 and Padjust  <  0.05. (C) GO enrichment analysis, BP, CC and MF stand for biological process, cellular components and molecular 
function, respectively. The standard for screening GO items with differences is Padjust  <  0.05. (D) KEGG enrichment analysis. The standard for 
screening KEGG pathways with differences is Padjust  <  0.05. (E) verification of differential genes expression by qPCR. The cecal samples of 42-day-old 
broilers was collected for transcriptome analysis (n  =  3). CON: broilers were raised in an environment of 21  ±  1°C. HS: broilers were raised in an 
environment of 33  ±  1°C (9:00–17:00) at 28  days, subjected to heat stress treatment for 8  h, and remained at an appropriate temperature (21  ±  1°C) for 
the other time as in CON.
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largest. Further, we analyzed the pathways with significant differences. 
Eight differential pathways were screened for KEGG enrichment 
analysis of differential metabolites (Figure 3D), including the FoxO 
signaling pathway, mTOR signaling pathway, D-arginine and 
D-ornithine metabolism, arginine biosynthesis, aminoacyl-tRNA 
biosynthesis, arginine and proline metabolism, ABC transporters and 
purine metabolism pathway, all of which play a direct or indirect role 
in regulating heat stress.

3.4. 16S rDNA amplicon results

3.4.1. α Diversity analysis
Figure  4B shows that heat stress increases the abundance of 

microbial communities and the types of low-abundance species. 
Randomly selected a certain amount of data from the sample and 
calculated the rarefaction curve based on the Simpson index. As 
shown in Figure 4A, as the curve tends to flatten out, the sequencing 

FIGURE 2

PCA and PLS-DA analysis of metabolomics. (A) Cation PCA diagram. (B) Anion PCA diagram. (C) Cation PLS-DA diagram. (D) Cation PLS-DA 
displacement test chart, the abscissa represents the displacement retention of the displacement test (the proportion consistent with the order of Y 
variables of the original model, the point with the displacement retention of 1 is the R2 and Q2 values of the original model), the ordinate represents the 
values of R2 (blue dot) and Q2 (red triangle) displacement test, and the two dashed lines represent the regression lines of R2 and Q2, respectively 
(E) Anion PLS-DA diagram. (F) Anion PLS-DA replacement test chart. The cecal samples of 42-day-old broilers was collected for metabolomic analysis 
(n  =  6). CON: broilers were raised in an environment of 21  ±  1°C. HS: broilers were raised in an environment of 33  ±  1°C (9:00–17:00) at 28  days, 
subjected to heat stress treatment for 8  h, and remained at an appropriate temperature (21  ±  1°C) for the other time as in CON.

https://doi.org/10.3389/fmicb.2023.1244004
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Liu et al. 10.3389/fmicb.2023.1244004

Frontiers in Microbiology 08 frontiersin.org

data volume is more reasonable, and more data volume will not affect 
α diversity index has a significant impact.

3.4.2. Microbial composition analysis
The principal component analysis (PCA) showed a variation of 

27.79% for PC1 and 17.8% for PC2 (Figure 4C). After filtering out the 
low-quality data, 478 and 1,358 ASVs were observed in CON and HS, 
respectively, and 464 ASVs in both groups (Figure 4D). Analyzing 
their species, Bacteroidota, Firmicutes, and Proteobacteria were the 
dominant species in the cecum of 42-day-old broilers. Meanwhile, 
heat stress increased the relative abundance of Proteobacteria in 
broilers and decreased the relative abundance of Bacteroidota and 
Firmicutes (Figure 4E). At the genus level, heat stress reduced the 
relative abundance of Bacteroides, Lactobacillus, and Alistipes, and 
increased the relative abundance of Fusobacterium, Thiobacillus, and 
PHOS-HE36 (Figure 4F).

3.4.3. Analysis of significantly different microbial 
communities

Analyze microorganisms with statistical differences between 
groups using the LEfSe software. Figure 5A shows 31 biomarkers at 
different classification levels in the CON and HS. Within the HS group 
of p_Proteobacteria, p_Fusobacteriota, and o_Burkholderiales were 
significantly higher than the CON. In contrast, the levels of the g_
Alistipes, f_Rikenellaceae, g_Lactobacillus, and g_Bacteroides were 
significantly lower than those of the CON. The evolutionary branch 

indicates (Figure 5B) that the significant differences in microorganisms 
in the HS are mainly concentrated in p_Proteobacteria, p_
Fusobacteriota, p_Chloroflexi. In contrast, the CON mainly 
concentrates on c_Bacteroidales and f_Lactobacillaceae.

3.4.4. Functional analysis of cecum 
microorganisms

The functional prediction of the cecal microbiota is conducted on 
the PICRUSt platform. By comparing to the KEGG database at level 2 
(Figure 5C), the gut microbiota of AA broilers is mainly involved in 
carbohydrate metabolism, membrane transport, amino acid 
metabolism, nucleotide metabolism, translation, replication and 
repair, energy metabolism, metabolism of cofactors and vitamins, 
poorly characterized, cellular processes and signaling. To further 
search for differential metabolic pathways, using LEfSe analysis, set 
LDA = 3. As shown in Figure 5D, the KEGG database at level 3 shows 
that HS microorganisms are mainly concentrated in fatty acid 
metabolism, while CON microorganisms are concentrated in such as 
purine metabolism.

3.5. Multi-omics analysis

Pearson correlation analysis was conducted on differential genes 
and metabolites, differential metabolites and ASVs, and differential 
genes and ASVs. As shown in Figures 6A,B, based on the differential 

FIGURE 3

Analysis of metabolomics results. (A) Volcano plot. The criteria for screening differential metabolites are VIP  >  1 and FDR  <  0.05. (B) HMDB classification 
chart, (C) top 20 KEGG enrichment analysis. The standard for screening differential metabolic pathways is Padjust  <  0.05. (D) Significant difference 
KEGG enrichment analysis. The standard for screening differential metabolic pathways is Padjust  <  0.05. The cecal samples of 42-day-old broilers was 
collected for metabolomic analysis (n  =  6).
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metabolites detected in the HS, ornithine was positively correlated 
with SULT1C3 (correlation = 0.873, Log2 Foldchange = −1.144, 
Padjust < 0.001), GSTT1L (correlation = 0.853, Log2 
Foldchange = −1.127, Padjust < 0.01) and ASV2, and negatively 
correlated with CALB1(correlation = −0.907, Log2 Foldchange = 2.251, 
Padjust < 0.001). The differential genes detected in the HS showed a 
negative correlation between CHAC1(correlation = −0.832, Log2 
Foldchange = 1.734, Padjust < 0.001) and ASV27 (Figure  6C). 
Phosphatidylethanolamine (PE) was negatively correlated with 
CALB1 and CHAC1, and positively with ASV27. Further analysis of 
KEGG co-enrichment in transcriptome and metabolome showed that 
5 pathways were enriched (Supplementary Table S9; Figure 7), which 
has included purine metabolism, mTOR signaling pathway, 
glutathione metabolism, FoxO signaling pathway and folate 
biosynthesis. It can be seen from Figures 3D, 5D that the pathway in 
which KEGG from metabolome and microbiome co-participation is 
purine metabolism.

4. Discussion

As an important economic indicator of meat and poultry, the 
quality and performance of poultry meat often directly determine the 
level of breeding efficiency in production, and with the development 
of the economy, people are increasingly favoring chicken with good 
taste, good meat quality and richer nutrition (Ma et al., 2022). Poultry 
exposure to heat stress can disrupt thermoregulation and homeostasis, 
reduce poultry performance, health and welfare, and lead to weight 
loss or even negative growth, low immunity, and even death (Mujahid 
et al., 2009; Kim et al., 2021; Sarsour et al., 2022). Growth performance 
is an important indicator for evaluating whether the production 
efficiency of poultry meets people’s expectations. The decrease in 
growth performance caused by heat stress is related to decreased food 
intake (Peng et al., 2023). The result of this study indicated that heat 
stress reduced the weight and ADG of broilers but had no effect on 
ADFI and FCR. The results of the current study are inconsistent with 

FIGURE 4

Analysis of microbial changes in the microbiome. (A) Rarefaction curve, (B) α diversity indexes, the screening criteria are value of p  <  0.05. (C) PCA plot, 
(D) Venn plot, top 10 species at the (E) phylum level, and the relative abundance of the top 10 species at the (F) genus level. The cecal contents of 
42-day-old broilers was collected for metabolomic analysis (n  =  4). CON: broilers were raised in an environment of 21  ±  1°C. HS: broilers were raised in 
an environment of 33  ±  1°C (9:00–17:00) at 28  days, subjected to heat stress treatment for 8  h, and remained at an appropriate temperature (21  ±  1°C) 
for the other time as in CON.
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previous studies on ADFI and FCR. Previous studies have found that 
high-temperature environments reduced broilers’ body weight, ADG, 
and ADFI (Deng et al., 2023). Sun S. et al. (2023) conducted heat stress 
treatment on 28-day-old broilers and found a significant reduction in 
ADFI, ADG, and FCR in 42-day-old broilers. In addition, Yilmaz and 
Gul (2023) found that heat stress reduced the ADG in 42-day-old 
broilers, but had no significant effect on the FCR. The above results 
indicate that this study demonstrates the negative effects of heat stress 
on broilers, indicating that a heat stress model has been successfully 

established. This may be  because when the temperature recovers, 
periodic heat stress can lead to birds overeating, thereby weakening 
the impact of heat stress on ADFI. In addition, the impact of heat 
stress on the growth performance of broilers not only depends on feed 
intake, but also includes other factors such as physiological, 
biochemical, hormonal changes, breeds of broiler, duration of heat 
stress, and temperature of heat stress treatment (Al-Abdullatif and 
Azzam, 2023). Research has shown that heat stress can damage growth 
performance by reducing protein and nutrient digestibility; Insulin 

FIGURE 5

LEfSe analysis and PICRUSt functional prediction. (A) LDA bar chart, the length of the bar chart represents the impact of different species, with the 
LDA  =  4. (B) Evolutionary branch chart, each small circle at different classification levels represents a classification at that level, and the diameter of the 
small circle is proportional to the relative abundance. Species with no significant differences are uniformly colored in yellow, and differential species 
are colored according to the group. (C) PICRUSt function predicts the top 10 stacking maps at the level 2. (D) PICRUSt function prediction at the level 
2 (LDA  =  3). The cecal contents of 42-day-old broilers was collected for metabolomic analysis (n  =  4). CON: broilers were raised in an environment of 
21  ±  1°C. HS: broilers were raised in an environment of 33  ±  1°C (9:00–17:00) at 28  days, subjected to heat stress treatment for 8  h, and remained at an 
appropriate temperature (21  ±  1°C) for the other time as in CON.

FIGURE 6

Multi-omics Analysis. (A) Differential genes and metabolites correlation heatmap, showing the correlation between top 50 differential genes and 
metabolites, (B) differential metabolites and ASVs correlation heatmap, (C) differential genes and ASVs correlation heatmap. Differential genes, 
differential metabolites and ASVs were derived from cecal transcriptome data (n  =  3), cecal metabolome data (n  =  6) and 16  s rDNA amplification data 
(n  =  4) of 42-day-old broilers, respectively.
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growth factor in the Endocrine system is the main regulator of muscle 
metabolism, participating in all stages of muscle formation and muscle 
regeneration, which can increase protein synthesis and promote 
differentiation, while heat stress will affect the secretion of insulin 
growth factor and thus reduce protein synthesis (Nawaz et al., 2021).

Research shows that transcriptome can help researchers analyze 
which pathways and genes are activated in response to the stressor 
(Zhang Y. et al., 2023; Zhang F. et al., 2023; Zhang X. et al., 2023). 
Compared to other parts of the intestine, the cecum of broilers plays 
a more important role in host defense (Khan and Chousalkar, 2020). 
Therefore, this is more important for studying the effects of heat stress. 
From the transcriptome results, 96 differential genes were identified, 
78 differential genes of which were up-regulated and 18 differential 
genes were down-regulated. PDK4 (pyruvic acid dehydrogenase 4), as 
a gene with significant differences, plays an important role in 
regulating energy homeostasis metabolism, glycolysis, and fat 
decomposition (Honda et al., 2017; Wen et al., 2021; Forteza et al., 
2023). In mice with ischemic stroke, it was found that the cecum 
metabolism was disordered, and the PDK4 related to fatty acid 
metabolism was up-regulated, which may lead to the reduction of 
steroid metabolic process activity (Ge et  al., 2022). Research has 
shown that PDK4 was previously identified as a differential gene in 
multiple chicken heat stress experiments (Wang et al., 2021). In the 
experiment on high-altitude-stressed Tibetan sheep, glycolysis can 
increase ATP content by up-regulating the expression of PDK4, 
providing energy for resisting hypoxia stress (Wen et al., 2021). As is 
well known, high temperatures can damage protein stability and lead 
to dysfunctional cell function (Mackei et  al., 2021). FKBP10 is a 
member of the FK113 binding protein gene family and is involved in 
many functions, including protein folding and repair in response to 
heat stress, which is necessary to maintain natural peptides and 
prevent protein aggregation (Akbarzadeh et al., 2018). Our previous 
research found that heat stress can affect lipid metabolism and 
increase cholesterol content in broilers (Zhang L. et al., 2022). Studies 
have found that LBP (lipopolysaccharide binding protein) has been 
used as an indicator of the impairment of intestinal barrier function, 
and its level can reflect the degree of intestinal leakage (Vancamelbeke 

and Vermeire, 2017; Wu et al., 2023). Intestinal barrier dysfunction 
can further contribute to the occurrence of alcoholic hepatitis by 
acting on the gut-liver axis, triggering inflammatory cascade reactions, 
and aggravating liver inflammation and LBP levels (Tilg et al., 2016). 
Heat stress can lead to an increase in LBP levels, which is consistent 
with our trend (Wickramasinghe et al., 2023). GO results indicated 
that differential genes were mainly enriched in immune processes. The 
KEGG results further indicated that differential genes were mainly 
enriched in other pathways, such as the NF-kB signaling pathway, 
calcium signaling pathway, and intestinal immune network for IgA 
production. These pathways play an important role in the intestinal 
injury. It is reported that heat stress can result in gut microflora 
dysbiosis, cause bacterial translocation, and thus induce the 
production of intestinal endotoxin. These endotoxins can activate 
TLR4-mediated reactions, including initiation of the NF-κB signaling 
pathway (Tang et al., 2021). NF-κB is a major transcription factor 
involved in inflammatory diseases, which can respond to heat-stress 
stimuli and activate the NF-κB signaling pathway in broilers (Xu et al., 
2023), thereby inducing tissue damage (Liu W. C. et al., 2021; Liu 
Y. R. et al., 2021). NF-κB acts downstream of TLR4 and other immune 
receptors, increasing the excessive production of IL-6, IL-1β, and 
TNF-α leads to the occurrence of inflammatory responses in response 
to heat stress (Vallabhapurapu and Karin, 2009). Liu et  al. (2022, 
2022a,b) found that chronic heat stress can enhance the NF-κB 
signaling pathway and promote the occurrence of liver inflammation 
in broilers. The intestinal immune network for IgA production have 
been confirmed to play an important role in immunity (Zhang et al., 
2018). The intestines are the largest lymphoid tissue, and intestinal 
immunity can produce many non-inflammatory IgA antibodies, the 
first line of defense against heat stress. Multiple cytokines (TGF-β, 
IL-10, IL-4, IL-5 and IL-6) are essential for B cells to differentiate into 
IgA plasma cells (Nagatake et  al., 2019; Yang et  al., 2021). IgA 
primarily functions in the intestinal cavity through secretory 
immunoglobulin A (SIgA), which maintain intestinal mucosal 
homeostasis and prevent harmful substances from adhering and 
entering the intestinal barrier (Lammers et al., 2010). Research has 
shown that chronic heat stress can damage intestinal immune function 
by promoting the inflammatory response and reducing IgA secretion 
(Yang et al., 2019). Heat stress can also affect the calcium signaling 
pathway, leading to mitochondrial oxidative stress and severe calcium 
overload, damaging mitochondrial structure and function, and even 
leading to apoptosis (Coble et al., 2014; Zhang W. et al., 2022; Yao 
et al., 2023).

Metabolomics research can understand changes in the metabolism 
of organisms, helping researchers better understand how chicken 
products are affected by the external environment (Zhang Y. et al., 
2023; Zhang F. et al., 2023; Zhang X. et al., 2023). The fermentation 
products produced by cecal microorganisms have a positive impact 
on intestinal health, and numerous cecal metabolites play a crucial 
role in maintaining intestinal barrier function (Liu et  al., 2022, 
2022a,b). Therefore, this is more important for studying the effects of 
heat stress on changes in cecal metabolites in broilers. According to 
the metabolomics results, 619 differential metabolites were identified, 
with 47 metabolites known structures, of which 13 metabolites were 
up-regulated and 34 were down-regulated. As one of the most 
differential metabolites of metabolome, ascorbyl palmitate has the 
function of clearing reactive oxygen species (ROS) and protecting 
DNA damage when coping with stress, and plays a key role in 

FIGURE 7

KEGG co-enrichment analysis. Transcriptome (n  =  3) and 
metabolome (n  =  6) co-enrichment pathways in the cecum of 
42-day-old broilers.
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protecting cells and cell membranes from oxidative damage (Xiao 
et al., 2014). In addition, ascorbyl palmitate is believed that increasing 
the amount of Vitamin C will increase the resistance to oxidative 
stress, thus increasing the resistance to certain diseases (Nieva-
Echevarría et al., 2021). Therefore, the oxidative damage caused by 
heat stress also reflects the reduction of ascorbyl palmitate content. 
Zhang Y. et al. (2023), Zhang F. et al. (2023), and Zhang X. et al. (2023) 
showed that the increase of ADP ribose content can identify damaged 
DNA and further activate the base excision repair mechanism to 
participate in heat stress regulation. This also confirms the 
upregulation of ADP ribose metabolite content in this study. KEGG 
enrichment results showed that differential metabolites were mainly 
enriched in the purine metabolism and ABC transporters. Purine is 
involved in DNA and RNA functions and is essential for cell survival 
and proliferation (Pedley and Benkovic, 2017). Heat stress will lead to 
oxidative stress in organisms, and purine metabolism is the basic 
reaction of oxidative stress and the imbalance between purine remedy 
and de novo synthesis pathway will lead to the production of ROS (Yu 
et al., 2021; Tian et al., 2022). Besides, the metabolism of intestinal 
microorganisms will affect the content change of metabolites. In this 
study, the differential pathway of microbial function prediction also 
includes purine metabolism, which also explains why it is enriched in 
metabolome data. ABC transporter is a transmembrane protein that 
can transport many molecules across the cell membrane (Yu et al., 
2021). As a member of the ABC transporters, ABCB10 deficiency may 
lead to mitochondrial oxidative damage and ROS production (Liesa 
et al., 2012). ROS exceeding the tolerance threshold level of the body 
can damage the body’s antioxidant system, leading to a decrease in 
antioxidant enzyme activity (Rahman and Rahman, 2012).

Microorganisms living in the gastrointestinal tract can affect 
poultry’s nutrition, physiology and intestinal development (Shang 
et  al., 2018). Research has shown that heat stress can increase 
microbial communities’ richness and abundance indicators, increase 
OUTs (Operational taxonomic units), and thus increase the Chao1, 
Shannon, Simpson, and ACE indexes (Goel et al., 2022a; Liu et al., 
2022, 2022a,b). This is consistent with the results of this study, which 
found that heat stress increased the number of OTUs and α diversity 
index, which may be  due to an increase in harmful microbial 
communities. At the phylum level, heat stress increased the relative 
abundance of Proteobacteria and decreased the relative abundance of 
Bacteroidota and Firmicutes. At the genus level, heat stress reduced the 
relative abundance of the Alistipes and increased the relative 
abundance of the Fusobacterium. LEfSe analysis showed that p_
Proteobacteria and p_Fusobacteriota were the differential microbiota 
under heat stress. At the same time, the relative abundance of g_
Alistipes and f_Rikenellaceae was significantly lower than that of the 
CON. Functional prediction analysis at levle 2 showed that the gut 
microbiota of AA broilers was mainly involved in carbohydrate 
metabolism, membrane transport, amino acid metabolism, replication 
and repair. This is consistent with the Li et  al. report’s functional 
prediction results (Yi et al., 2023). At the level 3 KEGG metabolic 
pathway showed that fatty acid metabolism was enhanced in the 
HS. Research has shown that fatty acid metabolism is an important 
mechanism closely related to energy homeostasis under heat stress 
(Lim et al., 2022). This is similar to the report of Jastrebski et al. (2017) 
that heat stress can increase the expression of enzymes related to fat 
metabolism, thereby improving fatty acid metabolism. In addition, 
Goel et al. (2022b) research found that heat stress can reduce the 

number of Bacteroidetes in the ileum of broilers. Bacteroidetes are 
generally considered to maintain complex and beneficial relationships 
with the host, including fermenting carbohydrates to produce volatile 
fatty acids (VFAs) as an energy source for host utilization and are 
positively correlated with growth performance (Zhu et al., 2021). In 
addition, Firmicutes and Proteobacteria are related to the fermentation 
of undigested dietary components. Firmicutes contribute to the 
production of the polysaccharide and butyrate (Wu et  al., 2018). 
Notably, a high proportion of Proteobacteria indicates intestinal 
ecological imbalance and is associated with the pathogenesis of many 
diseases, such as diarrhea, inflammatory bowel disease, and colitis 
(Wu et al., 2021). Alistipes belonging to the Bacteroidota is considered 
a relatively new bacterial genus that has protective effects on specific 
diseases, including liver fibrosis, colitis, cancer immunotherapy and 
cardiovascular diseases (Parker et al., 2020). It is also a major producer 
of short chain fatty acids in bacteria (Qi et al., 2019). They have the 
characteristics of glycolysis and proteolysis and produce acetic acid by 
producing fibrinolysis, digesting gelatin and fermenting carbohydrates 
(Zhu et al., 2019). As a member of Fusobacteriota, the increase in 
abundance of Fusobacterium can act as a pro-inflammatory factor to 
promote the occurrence of intestinal tumors (Patra and Kar, 2021). In 
addition, Fusobacterium metabolites may make the tumor 
microenvironment more comfortable over time by directly promoting 
tumor cell proliferation, vascular growth or immune cell infiltration 
(Kostic et al., 2013). Research found that the Rikenellaceae was related 
to metabolism and gastrointestinal health in the body and a large 
number of Rikenellaceae had the potential to protect against 
cardiovascular and metabolic diseases related to visceral fat and were 
potential biomarkers of healthy aging and longevity (Pin Viso et al., 
2021; Tavella et al., 2021; Wang et al., 2022). Therefore, the reduction 
of the relative abundance of Rikenellaceae may lead to the shortening 
of cell life, which also confirms that differential genes are enriched in 
cellular senescence.

There is a strong interdependence between gut microbiota, genes 
and metabolites. Therefore, multi-omics analysis can help us analyze 
specific mechanisms of action. Pearson correlation analysis showed 
that ornithine was negatively correlated with CALB1 and positively 
correlated with SULT1C3, GSTT1L and ASV2 (g_Lactobacillus). PE 
was negatively correlated with CALB1 and CHAC1. Studies have 
shown that amino acids serve as components of synthetic proteins and 
as important physiological and behavioral regulators, such as 
regulating stress responses (Chowdhury et al., 2021). Long-term heat 
stress can reduce the content of most free amino acids (Chowdhury 
et al., 2021), such as a decrease in ornithine content in the plasma of 
laying hens exposed to long-term heat stress (Chowdhury et al., 2014). 
L-ornithine is one of the metabolites in the urea cycle, proline, 
glutamate, arginine, and polyamine metabolism. It can stimulate the 
secretion of growth hormone by the pituitary gland and promote the 
breakdown and metabolism of proteins, sugars and fats (Xiong et al., 
2016). Meanwhile, under heat stress conditions, a decrease in 
ornithine content may weaken the stimulation of glutathione 
metabolism, thereby reducing the antioxidant capacity of broilers 
(Xiong et al., 2016). SULT1C3, which has sulfotransferase activity, 
plays a role in larger biomolecules, including proteins and 
carbohydrates, and is vital in maintaining tissue structure and cellular 
signaling (Rondini et al., 2014). GSTT1L is believed to be related to 
glutathione metabolism in broilers, participating in antioxidant 
activity, improving heat tolerance and aging (Zhang et al., 2017; Liu 
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et  al., 2019). However, research has found that supplementing 
Lactobacillus probiotics can improve the antioxidant capacity of 
broilers (Dashti and Zarebavani, 2021). The above results confirm the 
findings of this study. Therefore, the downregulation of these genes 
and microorganisms reflects a decrease in antioxidant levels and heat 
tolerance in broilers. Heat stress is related to the secretion of many 
hormones (such as estrogen, glucocorticoid, and catecholamine), 
which may affect the expression of the CALB1 in tissues in different 
ways (Ebeid et  al., 2012). CALB1, as an intracellular transporter 
protein, can transport Ca2+ and act as a Ca2+ sensor to prevent 
increased intracellular Ca2+ concentration from causing toxicity 
(O'Toole, 2011). In addition, CALB1 is a rate-limiting step for 
epithelial cells to absorb calcium, thus CALB1 expression is highly 
correlated with intestinal calcium absorption efficiency (Valable et al., 
2020). Bahadoran et al. (2018) found that heat stress can increase the 
expression of the CALB1 in the uterus of laying hens, which helps to 
increase the resistance of uterine cells to the harmful effects of heat 
stress. As the main source of phospholipids, PE plays an important 
role in the integrity of cells and organelle membranes in broilers (Guo 
et al., 2021b). Research shows that heat stress leads to the decrease of 
phospholipid level in broilers, which may be due to the damage to cell 
membrane caused by heat stress by increasing the activity of 
phospholipase A2 and promoting the decomposition of phospholipids 
(Guo et al., 2021b). The overexpression of CHAC1, which is induced 
in response to endoplasmic reticulum stress, will lead to large 
glutathione consumption (Aquilano et al., 2014; He et al., 2021). In 
addition, the high expression of CHAC1 in male broilers indicates that 
the degradation rate of glutathione is higher than average, which may 
play an important role in oxidative stress (Brothers et al., 2019). This 
is consistent with our research results. Therefore, the broiler will 
upregulate the expression of CALB1 and CHAC1 by responding to cell 
damage caused by heat stress, thereby increasing the body’s resistance. 
Further research has found that KEGG co-enrichment of differential 
genes and differential metabolites indicated such as folate biosynthesis, 
the FoxO signaling pathway, and the mTOR signaling pathway. 
According to reports, folic acid not only participates in nutrient 
metabolism but also has free radical scavenging and ROS activity. 
Dietary supplementation with folic acid can improve the antioxidant 
performance and immune status of broilers under heat stress, which 
may be due to the role of folic acid in regulating protein metabolism 
(Gouda et al., 2020). The enriched ALPL in folate biosynthesis can 
involve in inflammatory response, bone growth, and bone calcium 
metabolism (Sharma et al., 2014). High-temperature environments 
may lead to inflammatory reactions and disrupt bone calcium 
metabolism in poultry. Therefore, we speculate that upregulation of 
the ALPL can maintain bone health and reflect the resistance of 
poultry to high temperatures and pathogens. The mTOR signaling 
pathway is a key nutrient perception pathway that regulates cell 
metabolism and lifespan in response to various changes in stress, 
growth factors, and cell energy levels (Su et al., 2019). A previous 
study suggested that bovine mammary epithelial cells may resist heat 
stress damage by enhancing the absorption and metabolism of 
intracellular amino acids and activating the mTOR signaling pathway 
(Fu et al., 2021). In addition, heat stress significantly upregulated the 
expression of mTOR signaling pathway related genes, which is 
consistent with our research results (Fu et al., 2021). L-arginine, as a 
metabolite significantly enriched in the mTOR signaling pathway, is 

essential for maintaining growth, reproduction, and immunity 
(Murakami et  al., 2012). Research has found that supplementing 
arginine can enhance the development of the small intestine and 
nutrient absorption (Abdulkarimi et al., 2019). Therefore, the decrease 
in L-arginine content also reflects that heat stress can cause damage to 
the body and reduce immune function. The FoxO signaling pathway 
is involved in various cellular functions, including cell proliferation, 
apoptosis, autophagy, oxidative stress, and metabolic disorders (Xing 
et  al., 2018). According to reports, under environmental stress 
conditions, the FoxO signaling pathway in fish is significantly 
enriched, which is consistent with our research results (Shang et al., 
2023; Sun J. et al., 2023). The ROS produced by heat stress can regulate 
the expression of FoxO at the levels of transcription, protein activation, 
phosphorylation, and acetylation and overactivation and 
overexpression of FoxO can lead to the occurrence of various diseases 
(Liu et al., 2023). In addition, FoxO can also affect the expression of 
the Bcl-2 protein family, stimulate the expression of death receptor 
ligands and tumor necrosis factor related apoptosis inducing ligands, 
and induce cell death through mitochondrial mediated endogenous 
pathways and death receptor mediated exogenous pathways (Fu and 
Tindall, 2008).

In summary, our study found that heat stress led to decreased 
growth performance, intestinal oxidative damage, and antioxidant 
capacity in broilers, a process related to the complex regulation of 
genes, metabolites, and microorganisms. This will provide a theoretical 
reference for the poultry industry to improve the problem of 
heat stress.

5. Conclusion

In this study, heat stress reduced the body weight and ADG, 
altered the expression of purine metabolism, calcium signaling 
pathway, intestinal immune network for IgA production and FoxO 
signaling pathway, and increased the expression of cecal microbiota α 
diversity index, the relative abundance of Proteobacteria and Alistipes 
decreased the relative abundance of Bacteroidetes and Firmicutes. 
PICRUSt prediction showed that the cecum microorganisms of AA 
broilers in HS were mainly enriched in fatty acid metabolism, while 
those in CON were mainly enriched in the purine metabolism 
pathway. The multi-omic analysis found that the KEGG 
co-participating pathway of differential genes, metabolites and 
microorganisms was the purine metabolism. Pearson correlation 
analysis showed that ornithine was positively correlated with 
SULT1C3, GSTT1L and g_ Lactobacillus, and negatively correlated 
with CALB1. L-arginine and PC were negatively correlated with IFI6 
and positively correlated with SULT1C3. PE was negatively correlated 
with CALB1 and CHAC1, and positively with g_Alistipes.
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