1,582 research outputs found

    A patient preference study that evaluated fluticasone furoate and mometasone furoate nasal sprays for allergic rhinitis

    Get PDF
    Background: Corticosteroid nasal sprays are the mainstay of treatment for allergic rhinitis. These sprays have sensory attributes such as scent and/or odor, taste and aftertaste, and run down the throat and/or the nose, which, when unpleasant, can affect patient preference for, and compliance with, treatment. Objective: This study examined patient preference for fluticasone furoate nasal spray (FFNS) or mometasone furoate nasal spray (MFNS) based on their sensory attributes after administration in patients with allergic rhinitis. Methods: This was a multicenter, randomized, double-blind, cross-over study. Patient preferences were determined by using three questionnaires (Overall Preference, Immediate Attributes, and Delayed Attributes). Results: Overall, 56% of patients stated a preference for FFNS versus 32% for MFNS (p _ 0.001); the remaining 12% stated no preference. More patients stated a preference for FFNS versus MFNS for the attributes of “less drip down the throat” (p _ 0.001), “less run out of the nose” (p _ 0.05), “more soothing” (p _ 0.05), and “less irritating” (p _ 0.001). More patients responded in favor of FFNS versus MFNS for the immediate attributes, “run down the throat” (p _ 0.001), and “run out of the nose” (p _ 0.001), and, in the delayed attributes, “run down the throat” (p _ 0.001), “run out of the nose” (p _ 0.01), “presence of aftertaste” (p _ 0.01), and “no nasal irritation” (p _ 0.001). Conclusion: Patients with allergic rhinitis preferred FFNS versus MFNS overall and based on a number of individual attributes, including “less drip down the throat,” “less run out of the nose,” and “less irritating.” Greater preference may improve patient adherence and thereby improve symptom management of the patient’s allergic rhinitis

    Constructions of the soluble potentials for the non-relativistic quantum system by means of the Heun functions

    Full text link
    The Schr\"{o}dinger equation ψ"(x)+κ2ψ(x)=0\psi"(x)+\kappa^2 \psi(x)=0 where κ2=k2V(x)\kappa^2=k^2-V(x) is rewritten as a more popular form of a second order differential equation through taking a similarity transformation ψ(z)=ϕ(z)u(z)\psi(z)=\phi(z)u(z) with z=z(x)z=z(x). The Schr\"{o}dinger invariant IS(x)I_{S}(x) can be calculated directly by the Schwarzian derivative {z,x}\{z, x\} and the invariant I(z)I(z) of the differential equation uzz+f(z)uz+g(z)u=0u_{zz}+f(z)u_{z}+g(z)u=0. We find an important relation for moving particle as 2=IS(x)\nabla^2=-I_{S}(x) and thus explain the reason why the Schr\"{o}dinger invariant IS(x)I_{S}(x) keeps constant. As an illustration, we take the typical Heun differential equation as an object to construct a class of soluble potentials and generalize the previous results through choosing different ρ=z(x)\rho=z'(x) as before. We get a more general solution z(x)z(x) through integrating (z)2=α1z2+β1z+γ1(z')^2=\alpha_{1}z^2+\beta_{1}z+\gamma_{1} directly and it includes all possibilities for those parameters. Some particular cases are discussed in detail.Comment: 11 page

    Correlation Effects in Side-Coupled Quantum Dots

    Full text link
    Using Wilson's numerical renormalization group (NRG) technique we compute zero-bias conductance and various correlation functions of a double quantum dot (DQD) system. We present different regimes within a phase diagram of the DQD system. By introducing a negative Hubbard U on one of the quantum dots, we simulate the effect of electron-phonon coupling and explore the properties of the coexisting spin and charge Kondo state. In a triple quantum dot (TQD) system a multi-stage Kondo effect appears where localized moments on quantum dots are screened successively at exponentially distinct Kondo temperatures.Comment: 13 pages, 10 figure

    Purification of a factor from human peritoneal fluid that is able to immobilize spermatozoa

    Get PDF
    Human peritoneal fluid has been claimed to influence sperm motility. This report gives evidence for the presence in mid-cycle peritoneal fluid of a protein-bound, lipidic (hydrophobic) component able to immobilize spermatozoa as a function of time. This component was extracted from molecular weight-sieving and ion-exchange/high pressure liquid chromatography (HPLC)-purified peritoneal fluid fractions by either chloroform/methanol or charcoal treatments; resuspension of the chloroform/methanol extract with BWW-buffer and subsequent testing on spermatozoa resulted in sperm immobilization. Sequential or step-down chromatographic procedures (molecular weight-sieving→cation-exchange→anion-exchange HPLC separations of native peritoneal fluid) and extensive dialysis against double distilled water allowed the purification of the sperm immobilizing factor, as evidenced by the shorter incubation times necessary for sperm immobilization. Furthermore, the active fraction was found to immobilize spermatozoa without affecting its viability. Separation of the chloroform/methanol extracted immobilizing fraction on thin layer chromatography under conditions for phospholipid detection allowed the identification of a characteristic band which, after re-extraction, was found to be the sperm immobilizing substance. This factor does not contain choline, ethanolamine or serine. These results suggest that some lipidic peritoneal fluid components may influence sperm motilit

    Prostaglandin E2 enhances alveolar bone formation in the rat mandible

    Get PDF
    Prostaglandin E-2 (PGE(2)) induces bone formation in stress-bearing bones. The mandible, a stress-bearing bone, is loaded daily during mastication. The aim of this study was to determine if PGE(2) delivered locally to the mandible over 20 days enhances alveolar bone deposition. In 18 Lewis rats, controlled-release pellets containing PGE2 were implanted on the buccal aspect on the left-hand side of the mandible, mesial to the root of the first molar. Controlled-release pellets locally delivered 0.1, 0.05, or 0.025 mg/day of PGE2. The right side of the mandible was used as a matched control for each animal. Six sham-treated animals were implanted with a placebo pellet. On days 7 and 19, animals were injected with the bone markers tetracycline and calcein, respectively. On day 21, animals were sacrificed and undecalcified tissues obtained for morphometrical analysis. Morphometrical measurements were analyzed by paired t test to determine differences between the matched samples and one-way ANOVA to compare the different treatment groups. A significant increase in alveolar bone area was observed in mandibles treated with 0.1 and 0.05 mg/day when compared with matched controls and the placebo group. This was accompanied by a significant increase in alveolar bone height and width. The proportions of double-labeled surface (dLS), the mineral apposition rate (MAR), and bone formation rate (BFR) were significantly increased in mandibles treated with the two higher doses of PGE(2). The proportion of resorptive surface (RS) was significantly reduced in these two groups. It is concluded that PGE2 induces alveolar bone formation in the mandible when locally delivered at a dose of 0.1 or 0.05 mg/day for 20 days. (C) 2004 Elsevier Inc. All rights reserved

    Arsenic accumulation in lettuce (Lactuca sativa L.) and broad bean (Vicia faba L.) crops and its potential risk for human consumption

    Get PDF
    Exposure to arsenic (As) is considered one of the primary health risks humans face worldwide. This study was conducted to determine As absorption by broad beans and lettuce crops grown in soil with As contents and irrigated with water contaminated with this toxic element, in Pastos Chicos, Jujuy (Argentina). Total dry biomass (TDB) and total As were determined in soils, roots, leaves, pods and seeds. These data were used to determine several parameters, such as translocation (TF) and bioconcentration (BCF) factors, target hazard quotient (THQ), and carcinogenic risk (CR). Broad bean plants had the lowest biomass production when exposed to As in irrigation water and soil. Lettuce plants presented TDB reductions of 33.3 and 42.8% when grown in soil polluted with As, and in control soil under irrigation with contaminated water, respectively. The presence of this toxicant in broad bean seeds and lettuce leaves (edible parts) exceeded the limits established by Código Alimentario Argentino, i.e. 0.10 and 0.30 mg/kg, respectively. THQ values for lettuce leaves were higher than 1, the same as those for broad bean seeds when grown in soil with As contents and irrigated with arsenic-contaminated water, thus suggesting that consumers would run significant risks when consuming these vegetables. Furthermore, this type of exposure to As implied a CR that exceeded the acceptable 1 × 10−4 risk level. Hence, we may conclude that consuming lettuce and broad beans grown at the evaluated site brings about considerable health risks for local residents.Fil: Yanez, Luciano Matias. Universidad Nacional de Jujuy. Facultad de Ciencias Agrarias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta; ArgentinaFil: Alfaro, J. A.. Universidad Nacional de Jujuy. Facultad de Ciencias Agrarias; ArgentinaFil: Avila Carreras, Natalia Maria Elisa. Universidad Nacional de Jujuy. Facultad de Ciencias Agrarias; ArgentinaFil: Bovi Mitre, G.. Universidad Nacional de Jujuy. Facultad de Ciencias Agrarias; Argentin

    Relevance of quantum fluctuations in the Anderson-Kondo model

    Full text link
    We study a localized spin coupled to an Anderson impurity to model the situation found in higher transition metal or rare earth compounds like e.g.\ LaMnO3_3 or Gd monopnictides. We find that, even for large quantum numbers of the localized spin, quantum fluctuations play an essential role for the case of ferromagnetic coupling between the spin and the impurity levels. For antiferromagnetic coupling, a description in terms of a classical spin is appropriate

    An Adaptive Mutation in Enterococcus faecium LiaR Associated with Antimicrobial Peptide Resistance Mimics Phosphorylation and Stabilizes LiaR in an Activated State

    Get PDF
    The cyclic antimicrobial lipopeptide daptomycin (DAP) triggers the LiaFSR membrane stress response pathway in enterococci and many other Gram-positive organisms. LiaR is the response regulator that, upon phosphorylation, binds in a sequence-specific manner to DNA to regulate transcription in response to membrane stress. In clinical settings, non-susceptibility to DAP by Enterococcus faecium is correlated frequently with a mutation in LiaR of Trp73 to Cys (LiaRW73C). We have determined the structure of the activated E. faecium LiaR protein at 3.2 Å resolution and, in combination with solution studies, show that the activation of LiaR induces the formation of a LiaR dimer that increases LiaR affinity at least 40-fold for the extended regulatory regions upstream of the liaFSR and liaXYZ operons. In vitro, LiaRW73C induces phosphorylation-independent dimerization of LiaR and provides a biochemical basis for non-susceptibility to DAP by the upregulation of the LiaFSR regulon. A comparison of the E. faecalis LiaR, E. faecium LiaR, and the LiaR homolog from Staphylococcus aureus (VraR) and the mutations associated with DAP resistance suggests that physicochemical properties such as oligomerization state and DNA specificity, although tuned to the biology of each organism, share some features that could be targeted for new antimicrobials
    corecore