19 research outputs found
Gradient flows for empirical Bayes in high-dimensional linear models
Empirical Bayes provides a powerful approach to learning and adapting to
latent structure in data. Theory and algorithms for empirical Bayes have a rich
literature for sequence models, but are less understood in settings where
latent variables and data interact through more complex designs. In this work,
we study empirical Bayes estimation of an i.i.d. prior in Bayesian linear
models, via the nonparametric maximum likelihood estimator (NPMLE). We
introduce and study a system of gradient flow equations for optimizing the
marginal log-likelihood, jointly over the prior and posterior measures in its
Gibbs variational representation using a smoothed reparametrization of the
regression coefficients. A diffusion-based implementation yields a Langevin
dynamics MCEM algorithm, where the prior law evolves continuously over time to
optimize a sequence-model log-likelihood defined by the coordinates of the
current Langevin iterate. We show consistency of the NPMLE as under mild conditions, including settings of random sub-Gaussian
designs when . In high noise, we prove a uniform log-Sobolev
inequality for the mixing of Langevin dynamics, for possibly misspecified
priors and non-log-concave posteriors. We then establish polynomial-time
convergence of the joint gradient flow to a near-NPMLE if the marginal negative
log-likelihood is convex in a sub-level set of the initialization
A Novel Multi-Population Artificial Bee Colony Algorithm for Energy-Efficient Hybrid Flow Shop Scheduling Problem
Considering green scheduling and sustainable manufacturing, the energy-efficient hybrid flow shop scheduling problem (EHFSP) with a variable speed constraint is investigated, and a novel multi-population artificial bee colony algorithm (MPABC) is developed to minimize makespan, total tardiness and total energy consumption (TEC), simultaneously. It is necessary for manufacturers to fully understand the notion of symmetry in balancing economic and environmental indicators. To improve the search efficiency, the population was randomly categorized into a number of subpopulations, then several groups were constructed based on the quality of subpopulations. A different search strategy was executed in each group to maintain the population diversity. The historical optimization data were also used to enhance the quality of solutions. Finally, extensive experiments were conducted. The results demonstrate that MPABC can achieve an outstanding performance on three metrics DIR, c and nd for the considered EHFSP
A Novel Multi-Population Artificial Bee Colony Algorithm for Energy-Efficient Hybrid Flow Shop Scheduling Problem
Considering green scheduling and sustainable manufacturing, the energy-efficient hybrid flow shop scheduling problem (EHFSP) with a variable speed constraint is investigated, and a novel multi-population artificial bee colony algorithm (MPABC) is developed to minimize makespan, total tardiness and total energy consumption (TEC), simultaneously. It is necessary for manufacturers to fully understand the notion of symmetry in balancing economic and environmental indicators. To improve the search efficiency, the population was randomly categorized into a number of subpopulations, then several groups were constructed based on the quality of subpopulations. A different search strategy was executed in each group to maintain the population diversity. The historical optimization data were also used to enhance the quality of solutions. Finally, extensive experiments were conducted. The results demonstrate that MPABC can achieve an outstanding performance on three metrics DIR, c and nd for the considered EHFSP
Recommended from our members
Effects of ferrihydrite nanoparticle incorporation in cementitious materials on radioactive waste immobilization.
To enhance the long-term immobilization of radioactive wastes, ferrihydrite nanoparticles were incorporated into cementitious materials. The effects of ferrihydrite nanoparticles on the physicochemical and mechanical properties of cementitious materials and the immobilization of uranium (U), strontium (Sr) and cesium (Cs) were investigated. Adding ferrihydrite nanoparticles at 0.65%, 1.30%, 3.90% and 6.50% of cement weight slightly improved compressive strength by 5-11%, but dramatically reduced U leaching by 50-57%. The enhanced U immobilization was attributed to the strong adsorption of U by ferrihydrite nanoparticles, and the structural incorporation of U into hematite formed during ferrihydrite recrystallization. Although ferrihydrite nanoparticles had weaker effect than hematite nanoparticles on improving cement hydration and reducing permeability, they exhibit stronger U immobilization capacity. In contrast, incorporating ferrihydrite nanoparticles into cementitious materials had no significant effects on Cs and Sr leaching and no detectable adsorption of Sr and Cs. This study elucidated the fundamental differences in the interactions between ferrihydrite nanoparticles and U, Sr or Cs within cementitious systems that led to the distinctive immobilization mechanisms for these radionuclides. It generated new mechanistic understandings of U, Sr and Cs leaching from cementitious barriers modified by Fe-based nanoparticles, and proposed a new approach for enhancing long-term immobilization of U
Differential Immunogenicity and Protective Efficacy Elicited by MTO- and DMT-Adjuvanted CMFO Subunit Vaccines against Mycobacterium tuberculosis Infection
Tuberculosis (TB) remains a major and global problem of public health. An effective TB subunit vaccine is urgently needed. Proper selection of the delivery system for the vaccine is crucial for inducing an appropriate immune response tailored to control the target pathogen. In this study, we compared the immunogenicity and protective efficacy of CMFO subunit vaccines against primary progressive TB in two different adjuvant systems: the MTO oil-in-water (O/W) emulsion composed of monophosphoryl lipid A (MPL), trehalose-6,60-dibehenate (TDB), and oil in water emulsion MF59 and the DMT liposome containing dimethyldioctadecylammonium bromide (DDA), monophosphoryl lipid A (MPL), and trehalose-6,60-dibehenate (TDB). Our results demonstrated that the DMT-adjuvanted CMFO could confer more significant protection against M. tuberculosis infection than the CMFO/MTO did in mice. In particular, the adjuvant DMT showed a stronger ability than the O/W emulsion to adjuvant CMFO subunit vaccine and enhanced protection, attributed to elicit Th1-biased responses, strong Th1/Th17 cytokine responses, and IFN-γ+ or IL-2+ T cell responses. Therefore, our findings demonstrate that the liposome delivery system shows more effectiveness to adjuvant TB subunit vaccine than O/W emulsion and highlight the importance of adjuvant formulation for the better efficacy of a protein vaccine
Controlled Sputtering Pressure on High-Quality Sb2Se3 Thin Film for Substrate Configurated Solar Cells
International audienceMagnetron sputtering has become an effective method in Sb2Se3 thin film photovoltaic. Research found that post-selenization treatments are essential to produce stoichiometric thin films with desired crystallinity and orientation for the sputtered Sb2Se3. However, the influence of the sputtering process on Sb2Se3 device performance has rarely been explored. In this work, the working pressure effect was thoroughly studied for the sputtered Sb2Se3 thin film solar cells. High-quality Sb2Se3 thin film was obtained when a bilayer structure was applied by sputtering the film at a high (1.5 Pa) and a low working pressure (1.0 Pa) subsequently. Such bilayer structure was found to be beneficial for both crystallization and preferred orientation of the Sb2Se3 thin film. Lastly, an interesting power conversion efficiency (PCE) of 5.5% was obtained for the champion device
The Promoter Analysis of VvPR1 Gene: A Candidate Gene Identified through Transcriptional Profiling of Methyl Jasmonate Treated Grapevine (Vitis vinifera L.)
Methyl jasmonate (MeJA) plays a vital role in plant disease resistance and also induces the expression of disease resistance genes in plants. In this study, a transcriptome analysis was performed on grapevine leaves after 12, 24 and 48 h of MeJA-100 μM treatment. A total of 1242 differentially expressed genes (DEGs) were identified from the transcriptome data, and the analysis of the DEGs showed that genes related to phytohormone signal transduction, jasmonic acid-mediated defense, Mitogen-activated protein kinase (MAPK), and flavonoid biosynthetic pathways were upregulated. As Pathogenesis-related gene 1 (PR1) is an important marker gene in plant defense also upregulated by MeJA treatment in RNA-seq data, the VvPR1 gene was selected for a promoter analysis with β-glucuronidase (GUS) through transient expression in tobacco leaves against abiotic stress. The results showed that the region from −1837 bp to −558 bp of the VvPR1 promoter is the key region in response to hormone and wound stress. In this study, we extended the available knowledge about induced defense by MeJA in a grapevine species that is susceptible to different diseases and identified the molecular mechanisms by which this defense might be mediated
Suppressing Buried Interface Nonradiative Recombination Losses Towards High‐efficiency Antimony Triselenide Solar Cells
International audienceAntimony triselenide (Sb2Se3) has possessed excellent optoelectronic properties and has gained interest as a light-harvesting material for photovoltaic technology over the past several years. However, the severe interfacial and bulk recombination obviously contribute to significant carrier transport loss thus leading to the deterioration of power conversion efficiency (PCE). In this work, we synergistically employ buried interface and heterojunction engineering to regulate the film growth kinetic and optimize the band alignment. Through this approach, the orientation of the precursor films is successfully controlled, promoting the preferred orientational growth of the (hk1) of the Sb2Se3 films. Besides, interfacial trap-assisted non-radiative recombination loss and heterojunction band alignment are successfully minimized and optimized. As a result, the champion device presents a PCE of 9.24% with short-circuit density (JSC) and fill factor (FF) of 29.47 mA/cm2 and 63.65%, respectively, representing the highest efficiency in sputtered-derived Sb2Se3 solar cells. This work provides an insightful prescription for fabricating high-quality Sb2Se3 thin film and enhancing the performance of Sb2Se3 solar cells