54 research outputs found
Evidence for human-centric in-vehicle lighting: Part 2 — Modeling illumination based on color-opponents
Illumination preference models are usually defined in a static scenery, rating common-colored objects by a single scale or semantic differentials. Recently, it was reported that two to three illumination characteristics are necessary to define a high correlation in a bright office-like environment. However, white-light illumination preferences for vehicle-occupants in a dynamic semi- to full automated modern driving context are missing. Here we conducted a global free access online survey using VR engines to create 360° sRGB static in-vehicle sceneries. A total of 164 participants from China and Europe answered three levels in our self-hosted questionnaire by using mobile access devices. First, the absolute perceptional difference should be defined by a variation of CCT for 3,000, 4,500, and 6,000 K or combinations, and light distribution, either in a spot- or spatial way. Second, psychological light attributes should be associated with the same illumination and scenery settings. Finally, we created four driving environments with varying external levels of interest and time of the day. We identified three key results: (1) Four illumination groups could be classified by applying nMDS. (2) Combinations of mixed CCTs and spatial light distributions outperformed compared single light settings (p < 0.05), suggesting that also during daylight conditions artificial light supplements are necessary. (3) By an image transformation in the IPT and CAM16 color appearance space, comparing external and in-vehicle scenery, individual illumination working areas for each driving scenery could be identified, especially in the dimension of chroma-, partially following the Hunt-Effect, and lightness contrast, which synchronizes the internal and external brightness level. We classified our results as a starting point, which we intend to prove in a follow-up-controlled laboratory study with real object arrangements. Also, by applying novel methods to display high fidelity 360° rendered images on mobile access devices, our approach can be used in the future interdisciplinary research since high computational mobile devices with advanced equipped sensory systems are the new standard of our daily life
HGF-Induced PKCζ Activation Increases Functional CXCR4 Expression in Human Breast Cancer Cells
The chemokine receptor CXCR4 and its ligand CXCL12 have been shown to mediate the metastasis of many malignant tumors including breast carcinoma. Interaction between hepatocyte growth factor (HGF) and the Met receptor tyrosine kinase mediates development and progression of cancers. HGF is able to induce CXCR4 expression and contributes to tumor cell invasiveness in breast carcinoma. However, the mechanism of the CXCR4 expression modulated by c-Met-HGF axis to enhance the metastatic behavior of breast cancer cells is still unclear. In this study, we found that HGF induced functional CXCR4 receptor expression in breast cancer cells. The effect of HGF was specifically mediated by PKCζ activity. After transfection with PKCζ-siRNA, the phosphorylation of PKCζ and CXCR4 was abrogated in breast cancer cells. Interference with the activation of Rac1, a downstream target of HGF, prevented the HGF-induced increase in PKCζ activity and CXCR4 levels. The HGF-induced, LY294002-sensitive translocation of PKCζ from cytosol to plasma membrane indicated that HGF was capable of activating PKCζ, probably via phosphoinositide (PI) 3-kinases. HGF treatment also increased MT1-MMP secretion. Inhibition of PKCζ, Rac-1 and phosphatidylinositol 3-kinase may attenuate MT1-MMP expression in cells exposed to HGF. Functional manifestation of the effects of HGF revealed an increased ability for migration, chemotaxis and metastasis in MDA-MB-436 cells in vitro and in vivo. Our findings thus provided evidence that the process of HGF-induced functional CXCR4 expression may involve PI 3-kinase and atypical PKCζ. Moreover, HGF may promote the invasiveness and metastasis of breast tumor xenografts in BALB/c-nu mice via the PKCζ-mediated pathway, while suppression of PKCζ by RNA interference may abrogate cancer cell spreading
Image Quality Assessment Based on Three Features Fusion in Three Fusion Steps
The objective image quality assessment (IQA) method was developed to replace subjective observer image quality evaluations in various applications. A reliable full reference color IQA method that allows reference and distorted images to be compared in a symmetric way is designed via three fusion steps described in this article. The three fusion steps include luminance channels fusion, similarity maps fusion, and features fusion. A fusion weight coefficient is designed to fuse the luminance channels of input images as an enhancement operator for features. The extracted SR (spectral residual), gradient, and chrominance features, by means of symmetric calculations for the reference and distorted images, are conducted via similarity fusion processing. Then, based on the human visual system (HVS) characteristics of achromatic and chromatic information receiving, a features fusion map represents the weighted sum of three similarity fusion maps. Finally, a deviation pooling strategy is utilized to export the quality score after features fusion. The novel method is called the features fusion similarity index (FFS). Various experiments are carried out based on statistical evaluation criteria to optimize the parameters of FFS, after which the proposed method of FFS is compared with other state-of-the-art IQA methods using large-scale benchmark single distortion databases. The results show that FFS performs with higher consistency with respect to subjective scores in terms of prediction accuracy, e.g., the PLCC can achieve at least 0.9116 accuracy and at most 0.9774 accuracy for four databases. In addition, the average running time of FFS is 0.0657 s—a value representing a higher computational efficiency
Enhanced Visual Performance for In–Vehicle Reading Task Evaluated by Preferences, Emotions and Sustained Attention
The proliferation of electric and hybrid vehicles has made it possible for people to read and work in a stationary vehicle for extended periods. However, the current commonly used in–vehicle lighting design is still centered around driving and driving safety. Following recommendations from the literature, a neutral white color band (4000 K–5000 K) with 50–100 lx at the vehicle table area is favored. Whether this lighting environment can meet the needs to enhance the reading performance in a modern vehicle was investigated in this presented study. Therefore, in total, 12 lighting settings were designed based on combinations of four illuminance levels (50 lx, 100 lx, 150 lx and 200 lx) and three correlated color temperatures (3000 K, 4000 K and 5000 K); we recruited 19 subjects (12 females, 7 males) and let study participants evaluate each condition based on electronic and paper reading. Next, subjective preferences, positive and negative emotions, feeling of fatigue and sustained attention were tested. We found that higher illuminance and higher CCT (Correlated Color Temperature) can significantly improve the performance of in–vehicle readers in most aspects following Kruithof’s law (p < 0.05). Among them, we recommend the combination of 150 lx and 4000 K as the light parameters for in–vehicle reading as a new development guideline. In addition, we also discovered the inconsistency of people’s lighting preferences between in–vehicle spaces and conventional spaces. For indoor lighting, illuminance values up to 1000 lx are still favored. For an in–vehicle function, starting with 200 lx, the preference level and reading performance already declined. In comparison between electronic and paper reading, both were similarly evaluated. These results show that a neutral white light color should be chosen with a horizontal illuminance of maximal 150 lx for a reading light function independent of the reading device. Interdisciplinarily speaking, our findings can be applied in similar small spaces or transportation modes with gentle acceleration and deceleration such as small space hotel rooms, trains, airplanes or ships
A Novel Distribution for Representation of 6D Pose Uncertainty
The 6D Pose estimation is a crux in many applications, such as visual perception, autonomous navigation, and spacecraft motion. For robotic grasping, the cluttered and self-occlusion scenarios bring new challenges to the this field. Currently, society uses CNNs to solve this problem. The CNN models will suffer high uncertainty caused by the environmental factors and the object itself. These models usually maintain a Gaussian distribution, which is not suitable for the underlying manifold structure of the pose. Many works decouple rotation from the translation and quantify rotational uncertainty. Only a few works pay attention to the uncertainty of the 6D pose. This work proposes a distribution that can capture the uncertainty of the 6D pose parameterized by the dual quaternions, meanwhile, the proposed distribution takes the periodic nature of the underlying structure into account. The presented results include the normalization constant computation and parameter estimation techniques of the distribution. This work shows the benefits of the proposed distribution, which provides a more realistic explanation for the uncertainty in the 6D pose and eliminates the drawback inherited from the planar rigid motion
Evidence for Human-Centric In-Vehicle Lighting: Part 1
Today, up to hundreds of RGB and W-LEDs are positioned in a vehicle’s interior context and are able to be individually controlled in intensity, color and sequence. However, which kind of illumination distracts or supports car occupants and how to define such a modern illumination system is still under discussion and unknown. For that, first a definition for an in-vehicle lighting system is introduced. Second, a globally distributed study was performed based on a free-access online survey to investigate in-vehicle lighting for visual signaling within 10 colors, eight positions and six dynamic patterns. In total, 238 participants from China and Europe rated color preferences, color moods, light-position preferences, differences between manual and autonomous driving and also different meanings for dynamic lighting patterns. Out of these, three strong significant (p < 0.05) color preference groups were identified with a polarized, accepted or merged character. For the important driving-signaling mood attention, we found a significant hue dependency for Europeans which was missing within the Chinese participants. In addition, we identified that light positioned at the door and foot area was globally favored. Furthermore, we evaluated qualitative results: men are primarily focusing on fast-forward, whereas women paid more attention on practical light usage. These findings conclude the need for a higher lighting-car-occupant adaptation in the future grounded by deeper in-vehicle human factors research to achieve a higher satisfaction level. In interdisciplinary terms, our findings might also be helpful for interior building or general modern cockpit designs for trains or airplanes
Evidence for human-centric in-vehicle lighting: Part 2 — Modeling illumination based on color-opponents
Illumination preference models are usually defined in a static scenery, rating common-colored objects by a single scale or semantic differentials. Recently, it was reported that two to three illumination characteristics are necessary to define a high correlation in a bright office-like environment. However, white-light illumination preferences for vehicle-occupants in a dynamic semi- to full automated modern driving context are missing. Here we conducted a global free access online survey using VR engines to create 360° sRGB static in-vehicle sceneries. A total of 164 participants from China and Europe answered three levels in our self-hosted questionnaire by using mobile access devices. First, the absolute perceptional difference should be defined by a variation of CCT for 3,000, 4,500, and 6,000 K or combinations, and light distribution, either in a spot- or spatial way. Second, psychological light attributes should be associated with the same illumination and scenery settings. Finally, we created four driving environments with varying external levels of interest and time of the day. We identified three key results: (1) Four illumination groups could be classified by applying nMDS. (2) Combinations of mixed CCTs and spatial light distributions outperformed compared single light settings (p < 0.05), suggesting that also during daylight conditions artificial light supplements are necessary. (3) By an image transformation in the IPT and CAM16 color appearance space, comparing external and in-vehicle scenery, individual illumination working areas for each driving scenery could be identified, especially in the dimension of chroma-, partially following the Hunt-Effect, and lightness contrast, which synchronizes the internal and external brightness level. We classified our results as a starting point, which we intend to prove in a follow-up-controlled laboratory study with real object arrangements. Also, by applying novel methods to display high fidelity 360° rendered images on mobile access devices, our approach can be used in the future interdisciplinary research since high computational mobile devices with advanced equipped sensory systems are the new standard of our daily life
Study the Effect of eHMI Projection Distance and Contrast on People Acceptance in Blind-Spot Detection Scenario
External human-machine interaction (eHMI) road projections are a new feature for automotive lighting to improve vehicle communication with other road users. These modalities are used to draw users’ attention and awareness to specific situations. However, such advanced capabilities are still being debated to be used on the road in the context of whether or not such road projections can provide a clear and understandable message to road users in a specific scenario or lead to anticipation and change in the driving behavior. Therefore, it is necessary to investigate human factors aspects, such as the feeling of safety, useability, understanding, acceptability, and driver behavior. This study investigates the change in distance and luminance contrast and its effect on human driving behavior and acceptability in blind spot detection scenarios on the highway. A lab experiment with 12 participants is performed to analyze: understanding, satisfaction, usability, visibility, safety, workload, and driving behavior towards eHMI projection while varying projecting distance and luminance contrast. Video recordings and a designed questionnaire were used during the whole process. Results show that ego vehicle drivers prefer a projection distance between 5 to 10 m. However, a distance of 5 m is preferred by overtaking vehicle drivers in terms of visibility and safety. Luminance contrasts have no significant effect on the symbol’s visibility in 5 m and 10 m projection distances. In contrast, participants in overtaking vehicles feel difficult to understand the situation for 15 m condition, which increases their overall workload significantly (p < 0.019). No significant effect is recorded in terms of change in driving behavior
Evidence for Human-Centric In-Vehicle Lighting: Part 1
Today, up to hundreds of RGB and W-LEDs are positioned in a vehicle’s interior context and are able to be individually controlled in intensity, color and sequence. However, which kind of illumination distracts or supports car occupants and how to define such a modern illumination system is still under discussion and unknown. For that, first a definition for an in-vehicle lighting system is introduced. Second, a globally distributed study was performed based on a free-access online survey to investigate in-vehicle lighting for visual signaling within 10 colors, eight positions and six dynamic patterns. In total, 238 participants from China and Europe rated color preferences, color moods, light-position preferences, differences between manual and autonomous driving and also different meanings for dynamic lighting patterns. Out of these, three strong significant (p < 0.05) color preference groups were identified with a polarized, accepted or merged character. For the important driving-signaling mood attention, we found a significant hue dependency for Europeans which was missing within the Chinese participants. In addition, we identified that light positioned at the door and foot area was globally favored. Furthermore, we evaluated qualitative results: men are primarily focusing on fast-forward, whereas women paid more attention on practical light usage. These findings conclude the need for a higher lighting-car-occupant adaptation in the future grounded by deeper in-vehicle human factors research to achieve a higher satisfaction level. In interdisciplinary terms, our findings might also be helpful for interior building or general modern cockpit designs for trains or airplanes
- …