8 research outputs found

    EFFICACY OF PREBIOTIC DIETARY INTERVENTION TO MITIGATE RISKS FOR DEMENTIA VIA THE GUT-BRAIN AXIS

    Get PDF
    Alzheimer’s disease (AD) is the most common form of dementia with various risk factors including age, environmental factors such as brain injury and genetic factors, such as the E4 allele of the Apolipoprotein gene. Presence of the APOE4 allele increases AD risk by two- to four- fold. Recent studies have shown that mild traumatic brain injury (mTBI), even without loss of consciousness, increases risk of dementia diagnosis by more than two-fold in military personnel and is also a significant environmental risk factor for developing dementia in the general population. The gut-brain axis (GBA) or bi-directional communication between the brain and gut microbiome, has been a topic of investigation in mitigating symptoms after mTBI and throughout AD development. The gut microbiome can be modulated to improve one’s overall health. One way to manipulate the composition of the gut microbiome is by the ingestion of prebiotics, non-digestible carbohydrates that promote the growth of beneficial bacteria. The prebiotic that will be employed in these studies is inulin, which is found in chicory root and other vegetables, such as broccoli. The literature suggests that manipulation of the gut microbiome may be actionable to reduce symptoms after mTBI and decrease risk for dementia. We will test the hypothesis that modulating the gut microbiome with prebiotic inulin will reduce symptoms of mTBI and will decrease risk of AD-like symptoms in animal models

    Caloric Restriction Alters Postprandial Responses of Essential Brain Metabolites in Young Adult Mice

    Get PDF
    Caloric restriction (CR) has been shown to extend longevity and protect brain function in aging. However, the effects of CR in young adult mice remain largely unexplored. In addition to the fundamental, long-term changes, recent studies demonstrate that CR has a significant impact on transient, postprandial metabolic flexibility and turnover compared to control groups. The goal of this study was to identify the brain metabolic changes at a transient (2 h) and steady (6 h) postprandial state in young mice (5–6 months of age) fed with CR or ad libitum (AL; free eating). Using metabolomics profiling, we show that CR mice had significantly higher levels of neurotransmitters (e.g., glutamate, N-acetylglutamate), neuronal integrity markers (e.g., NAA and NAAG), essential fatty acids (e.g., DHA and DPA), and biochemicals associated carnitine metabolism (related to reduced oxidative stress and inflammation) in the cerebral cortex and hippocampus at 2-h. These biochemicals remained at high levels at the 6-h postprandial time-point. The AL mice did not show the similar increases in essential fatty acid and carnitine metabolism until the 6-h time-point, and failed to show increases in neurotransmitters and neuronal integrity markers at any time-point. On the other hand, metabolites related to glucose utilization—glycolysis and pentose phosphate pathway (PPP)—were low in the CR mice throughout the 6-h period and significantly increased at the 6-h time-point in the AL mice. Our findings suggest that CR induces distinct postprandial responses in metabolites that are essential to maintain brain functions. CR mice produced higher levels of essential brain metabolites in a shorter period after a meal and sustained the levels for an extended period, while maintaining a lower level of glucose utilization. These early brain metabolism changes in the CR mice might play a critical role for neuroprotection in aging. Understanding the interplay between dietary intervention and postprandial metabolic responses from an early age may have profound implications for impeding brain aging and reducing risk for neurodegenerative disorders

    Neuroimaging Biomarkers of mTOR Inhibition on Vascular and Metabolic Functions in Aging Brain and Alzheimer’s Disease

    Get PDF
    The mechanistic target of rapamycin (mTOR) is a nutrient sensor of eukaryotic cells. Inhibition of mechanistic mTOR signaling can increase life and health span in various species via interventions that include rapamycin and caloric restriction (CR). In the central nervous system, mTOR inhibition demonstrates neuroprotective patterns in aging and Alzheimer’s disease (AD) by preserving mitochondrial function and reducing amyloid beta retention. However, the effects of mTOR inhibition for in vivo brain physiology remain largely unknown. Here, we review recent findings of in vivo metabolic and vascular measures using non-invasive, multimodal neuroimaging methods in rodent models for brain aging and AD. Specifically, we focus on pharmacological treatment (e.g., rapamycin) for restoring brain functions in animals modeling human AD; nutritional interventions (e.g., CR and ketogenic diet) for enhancing brain vascular and metabolic functions in rodents at young age (5–6 months of age) and preserving those functions in aging (18–20 months of age). Various magnetic resonance (MR) methods [i.e., imaging (MRI), angiography (MRA), and spectroscopy (MRS)], confocal microscopic imaging, and positron emission tomography (PET) provided in vivo metabolic and vascular measures. We also discuss the translational potential of mTOR interventions. Since PET and various MR neuroimaging methods, as well as the different interventions (e.g., rapamycin, CR, and ketogenic diet) are also available for humans, these findings may have tremendous implications in future clinical trials of neurological disorders in aging populations

    Apolipoprotein E Genotype-Dependent Nutrigenetic Effects to Prebiotic Inulin for Modulating Systemic Metabolism and Neuroprotection in Mice via Gut-Brain Axis

    Get PDF
    OBJECTIVE: The goal of the study was to identify the potential nutrigenetic effects to inulin, a prebiotic fiber, in mice with different human apolipoprotein E (APOE) genetic variants. Specifically, we compared responses to inulin for the potential modulation of the systemic metabolism and neuroprotection via gut-brain axis in mice with human APOE ϵ3 and ϵ4 alleles. METHOD: We performed experiments with young mice expressing the human APOE3 (E3FAD mice and APOE4 gene (E4FAD mice). We fed mice with either inulin or control diet for 16 weeks starting from 3 months of age. We determined gut microbiome diversity and composition using16s rRNA sequencing, systemic metabolism using in vivo MRI and metabolomics, and blood–brain barrier (BBB) tight junction expression using Western blot. RESULTS: In both E3FAD and E4FAD mice, inulin altered the alpha and beta diversity of the gut microbiome, increased beneficial taxa of bacteria and elevated cecal short chain fatty acid and hippocampal scyllo-inositol. E3FAD mice had altered metabolism related to tryptophan and tyrosine, while E4FAD mice had changes in the tricarboxylic acid cycle, pentose phosphate pathway, and bile acids. Differences were found in levels of brain metabolites related to oxidative stress, and levels of Claudin-1 and Claudin-5 BBB tight junction expression. DISCUSSION: We found that inulin had many similar beneficial effects in the gut and brain for both E3FAD and E4FAD mice, which may be protective for brain functions and reduce risk for neurodegeneration. . E3FAD and E4FAD mice also had distinct responses in several metabolic pathways, suggesting an APOE-dependent nutrigenetic effects in modulating systemic metabolism and neuroprotection

    β-amyloid and tau drive early Alzheimer’s disease decline while glucose hypometabolism drives late decline

    Get PDF
    Clinical trials focusing on therapeutic candidates that modify β-amyloid (Aβ) have repeatedly failed to treat Alzheimer’s disease (AD), suggesting that Aβ may not be the optimal target for treating AD. The evaluation of Aβ, tau, and neurodegenerative (A/T/N) biomarkers has been proposed for classifying AD. However, it remains unclear whether disturbances in each arm of the A/T/N framework contribute equally throughout the progression of AD. Here, using the random forest machine learning method to analyze participants in the Alzheimer’s Disease Neuroimaging Initiative dataset, we show that A/T/N biomarkers show varying importance in predicting AD development, with elevated biomarkers of Aβ and tau better predicting early dementia status, and biomarkers of neurodegeneration, especially glucose hypometabolism, better predicting later dementia status. Our results suggest that AD treatments may also need to be disease stage-oriented with Aβ and tau as targets in early AD and glucose metabolism as a target in later AD

    Dietary inulin alters the gut microbiome, enhances systemic metabolism and reduces neuroinflammation in an APOE4 mouse model.

    No full text
    The apolipoprotein ε4 allele (APOE4) is the strongest genetic risk factor for Alzheimer's disease (AD). APOE4 carriers develop systemic metabolic dysfunction decades before showing AD symptoms. Accumulating evidence shows that the metabolic dysfunction accelerates AD development, including exacerbated amyloid-beta (Aβ) retention, neuroinflammation and cognitive decline. Therefore, preserving metabolic function early on may be critical to reducing the risk for AD. Here, we show that inulin increases beneficial microbiota and decreases harmful microbiota in the feces of young, asymptomatic APOE4 transgenic (E4FAD) mice and enhances metabolism in the cecum, periphery and brain, as demonstrated by increases in the levels of SCFAs, tryptophan-derived metabolites, bile acids, glycolytic metabolites and scyllo-inositol. We show that inulin also reduces inflammatory gene expression in the hippocampus. This knowledge can be utilized to design early precision nutrition intervention strategies that use a prebiotic diet to enhance systemic metabolism and may be useful for reducing AD risk in asymptomatic APOE4 carriers

    Prebiotic inulin enhances gut microbial metabolism and anti-inflammation in apolipoprotein E4 mice with sex-specific implications

    No full text
    Abstract Gut dysbiosis has been identified as a crucial factor of Alzheimer's disease (AD) development for apolipoprotein E4 (APOE4) carriers. Inulin has shown the potential to mitigate dysbiosis. However, it remains unclear whether the dietary response varies depending on sex. In the study, we fed 4-month-old APOE4 mice with inulin for 16 weeks and performed shotgun metagenomic sequencing to determine changes in microbiome diversity, taxonomy, and functional gene pathways. We also formed the same experiments with APOE3 mice to identify whether there are APOE-genotype dependent responses to inulin. We found that APOE4 female mice fed with inulin had restored alpha diversity, significantly reduced Escherichia coli and inflammation-associated pathway responses. However, compared with APOE4 male mice, they had less metabolic responses, including the levels of short-chain fatty acids-producing bacteria and the associated kinases, especially those related to acetate and Erysipelotrichaceae. These diet- and sex- effects were less pronounced in the APOE3 mice, indicating that different APOE variants also play a significant role. The findings provide insights into the higher susceptibility of APOE4 females to AD, potentially due to inefficient energy production, and imply the importance of considering precision nutrition for mitigating dysbiosis and AD risk in the future
    corecore