57 research outputs found

    Incorporation of branched-chain fatty acid into cellular lipids and caspase-independent apoptosis in human breast cancer cell line, SKBR-3

    Get PDF
    BACKGROUND: 13-Methyltetradecanoic acid (13-MTD), an iso-C15 branched- chain saturated fatty acid, has been shown to induce apoptotic cell death of numerous human cancer cells. However, the mechanism for the induction of apoptosis has not been fully understood. This study described the incorporation of 13-MTD into cellular lipid of SKBR-3 breast cancer cells and apoptosis related event to gain more insight into the mechanism action of this fatty acid. RESULTS: Treatment of SKBR-3 cells with 13-MTD lowered the cell viability and induced apoptosis. Proportion of 13-MTD in the glycerolipids increased to saturation level within 6 hours. Triacylglycerol contained 13-MTD in higher concentration than phospholipid with positional preference to sn-2. 13-MTD caused no changes in the caspase activity and its gene expression. Furthermore, addition of caspase-inhibitor to culture medium did not prevent the cells from the cytotoxicity of 13-MTD. No-increase in the cellular calcium level was also noted with 13-MTD treatment. However, 13-MTD disrupted the mitochondrial integrity in 4 hours, and increased the nuclear translocation of apoptosis inducing factor. CONCLUSION: These results showed that 13-MTD disrupted the mitochondrial integrity, and induced apoptosis via caspase-independent death pathway

    Connective tissue growth factor is correlated with peritoneal lymphangiogenesis.

    Get PDF
    Lymphatic absorption in the peritoneal cavity may contribute to ultrafiltration failure in peritoneal dialysis (PD). Lymphatic vessels develop during PD-related peritoneal fibrosis. Connective tissue growth factor (CTGF, also called CCN2) is an important determinant of fibrotic tissue remodeling, but little is known about its possible involvement in lymphangiogenesis. In this study, we investigated the relationship between CTGF and peritoneal lymphangiogenesis. A positive correlation was observed between vascular endothelial growth factor-C (VEGF-C), a major lymphangiogenic growth factor, and the CTGF concentration in human PD effluents. CTGF expression was positively correlated with expression of lymphatic markers and VEGF-C in human peritoneal biopsies. We found a positive correlation between the increase in CTGF and the increase in VEGF-C in cultured human peritoneal mesothelial cells (HPMCs) treated with transforming growth factor-β1 (TGF-β1). The diaphragm is a central player in peritoneal lymphatic absorption. CTGF expression was also correlated with expression of VEGF-C and lymphatics in a rat diaphragmatic fibrosis model induced by chlorhexidine gluconate (CG). Furthermore, CTGF gene deletion reduced VEGF-C expression and peritoneal lymphangiogenesis in the mouse CG model. Inhibition of CTGF also reduced VEGF-C upregulation in HPMCs treated with TGF-β1. Our results suggest a close relationship between CTGF and PD-associated lymphangiogenesis

    Ablation of Myeloid Cell MRP8 Ameliorates Nephrotoxic Serum-induced Glomerulonephritis by Affecting Macrophage Characterization through Intraglomerular Crosstalk

    Get PDF
    Toll-like receptor 4 (TLR4) and one of its endogenous ligands myeloid-related protein 8 (MRP8 or S100A8), especially expressed in macrophages, play an important role in diabetic nephropathy and autoimmune disorders. However, detailed mechanisms and consequence of MRP8 expression remain unknown, partly due to embryonic lethality of MRP8 knockout mice. In this study, Myeloid lineage cell-specific MRP8 knockout mice were generated, and nephrotoxic serum-induced glomerulonephritis was developed. Mice with conditional ablation of MRP8 gene in myeloid cells exhibited less severe histological damage, proteinuria and inflammatory changes compared to control mice. Mechanism of MRP8 upregulation was investigated using cultured cells. Co-culture of macrophages with mesangial cells or mesangial cell-conditioned media, but not with proximal tubules, markedly upregulated MRP8 gene expression and inflammatory M1 phenotype in macrophages, which was attenuated in MRP8-deleted bone marrow-derived macrophages. Effects of MRP8 deletion was further studied in the context of macrophage-inducible C-type lectin (Mincle), which is critically involved in maintenance of M1 phenotype of macrophages. MRP8 ablation in myeloid cells suppressed the induction of Mincle expression on macrophages in glomerulonephritis. Thus, we propose that intraglomerular crosstalk between mesangial cells and macrophages plays a role in inflammatory changes in glomerulonephritis, and MRP8-dependent Mincle expression in macrophage may be involved in the process

    Osteocrin ameliorates adriamycin nephropathy via p38 mitogen-activated protein kinase inhibition

    Get PDF
    Natriuretic peptides exert multiple effects by binding to natriuretic peptide receptors (NPRs). Osteocrin (OSTN) binds with high affinity to NPR-C, a clearance receptor for natriuretic peptides, and inhibits degradation of natriuretic peptides and consequently enhances guanylyl cyclase-A (GC-A/NPR1) signaling. However, the roles of OSTN in the kidney have not been well clarified. Adriamycin (ADR) nephropathy in wild-type mice showed albuminuria, glomerular basement membrane changes, increased podocyte injuries, infiltration of macrophages, and p38 mitogen-activated protein kinase (MAPK) activation. All these phenotypes were improved in OSTN- transgenic (Tg) mice and NPR3 knockout (KO) mice, with no further improvement in OSTN-Tg/NPR3 KO double mutant mice, indicating that OSTN works through NPR3. On the contrary, OSTN KO mice increased urinary albumin levels, and pharmacological blockade of p38 MAPK in OSTN KO mice ameliorated ADR nephropathy. In vitro, combination treatment with ANP and OSTN, or FR167653, p38 MAPK inhibitor, reduced Ccl2 and Des mRNA expression in murine podocytes (MPC5). OSTN increased intracellular cyclic guanosine monophosphate (cGMP) in MPC5 through GC-A. We have elucidated that circulating OSTN improves ADR nephropathy by enhancing GC-A signaling and consequently suppressing p38 MAPK activation. These results suggest that OSTN could be a promising therapeutic agent for podocyte injury

    Ablation of the N-type calcium channel ameliorates diabetic nephropathy with improved glycemic control and reduced blood pressure

    Get PDF
    Pharmacological blockade of the N-and L-type calcium channel lessens renal injury in kidney disease patients. The significance of specific blockade of α1 subunit of N-type calcium channel, Ca[v]2.2, in diabetic nephropathy, however, remains to be clarified. To examine functional roles, we mated Ca[v]2.2-/- mice with db/db (diabetic) mice on the C57BLKS background. Ca[v]2.2 was localized in glomeruli including podocytes and in distal tubular cells. Diabetic Ca[v]2.2-/- mice significantly reduced urinary albumin excretion, glomerular hyperfiltration, blood glucose levels, histological deterioration and systolic blood pressure (SBP) with decreased urinary catecholamine compared to diabetic Ca[v]2.2+/+ mice. Interestingly, diabetic heterozygous Ca[v]2.2+/- mice also decreased albuminuria, although they exhibited comparable systolic blood pressure, sympathetic nerve activity and creatinine clearance to diabetic Ca[v]2.2+/+ mice. Consistently, diabetic mice with cilnidipine, an N-/L-type calcium channel blocker, showed a reduction in albuminuria and improvement of glomerular changes compared to diabetic mice with nitrendipine. In cultured podocytes, depolarization-dependent calcium responses were decreased by ω-conotoxin, a Ca[v]2.2-specific inhibitor. Furthermore, reduction of nephrin by transforming growth factor-β (TGF-β) in podocytes was abolished with ω-conotoxin, cilnidipine or mitogen-activated protein kinase kinase inhibitor. In conclusion, Ca[v]2.2 inhibition exerts renoprotective effects against the progression of diabetic nephropathy, partly by protecting podocytes

    Increase of Total Nephron Albumin Filtration and Reabsorption in Diabetic Nephropathy

    Get PDF
    There is a hot debate concerning actual amount of albumin filtered through glomeruli and reabsorbed at proximal tubules in normal kidneys and diabetic conditions. To overcome current technical problems, we generated a drug-inducible megalin knockout mouse line, megalin(lox/lox);Ndrg1-CreER[T2] (or iMegKO), whose protein reabsorption can be shut off anytime by tamoxifen (Tam). After Tam administration, renal megalin protein expression was reduced by 92% compared to wild-type C57BL/6J mice, and renal reabsorption of intravenously-injected retinol binding protein was almost completely abrogated. Urinary albumin excretion increased to 175 μg/day (0.460 mg/mg-creatinine), suggesting that this was the amount of total nephron albumin filtration. Glomerular sieving coefficient of albumin was 1.7 x 10[-5]. By comparing streptozotocin-induced, Tam-treated, diabetic STZ;iMegKO mice with non-STZ;iMegKO mice, we estimated that daily albumin filtration was increased by 1.9-fold, reabsorption was increased by 1.8-fold, and reabsorption efficiency was reduced to 86% by development of diabetes (versus 96% in control). Such abnormalities were well normalized after insulin treatment. Another type 1 diabetic model of Akita;iMegKO mice showed equivalent results. This study reveals actual values and changes of albumin filtration and reabsorption in early diabetic nephropathy, bringing new insights into our understanding of renal albumin dynamics in hyperfiltration status of diabetic nephropath

    Natriuretic peptide receptor guanylyl cyclase-A pathway counteracts glomerular injury evoked by aldosterone through p38 mitogen-activated protein kinase inhibition

    Get PDF
    Guanylyl cyclase-A (GC-A) signaling, a natriuretic peptide receptor, exerts renoprotective effects by stimulating natriuresis and reducing blood pressure. Previously we demonstrated massive albuminuria with hypertension in uninephrectomized, aldosterone-infused, and high salt-fed (ALDO) systemic GC-A KO mice with enhanced phosphorylation of p38 mitogen-activated protein kinase (MAPK) in podocytes. In the present study, we examined the interaction between p38 MAPK and GC-A signaling. The administration of FR167653, p38 MAPK inhibitor, reduced systolic blood pressure (SBP), urinary albumin excretion, segmental sclerosis, podocyte injury, and apoptosis. To further investigate the local action of natriuretic peptide and p38 MAPK in podocytes, we generated podocyte-specific (pod) GC-A conditional KO (cKO) mice. ALDO pod GC-A cKO mice demonstrated increased urinary albumin excretion with marked mesangial expansion, podocyte injury and apoptosis, but without blood pressure elevation. FR167653 also suppressed urinary albumin excretion without reducing SBP. Finally, we revealed that atrial natriuretic peptide increased phosphorylation of MAPK phosphatase-1 (MKP-1) concomitant with inhibited phosphorylation of p38 MAPK in response to MAPK kinase 3 activation, thereby resulting in decreased mRNA expression of the apoptosis-related gene, Bax, and Bax/Bcl2 ratio in cultured podocytes. These results indicate that natriuretic peptide exerts a renoprotective effect via inhibiting phosphorylation of p38 MAPK in podocytes.</p

    Heterogeneous fibroblasts underlie age-dependent tertiary lymphoid tissues in the kidney

    Get PDF
    Acute kidney injury (AKI) is a common clinical condition defined as a rapid decline in kidney function. AKI is a global health burden, estimated to cause 2 million deaths annually worldwide. Unlike AKI in the young, which is reversible, AKI in the elderly often leads to end-stage renal disease, and the mechanism that prevents kidney repair in the elderly is unclear. Here we demonstrate that aged but not young mice developed multiple tertiary lymphoid tissues (TLTs) in the kidney after AKI. TLT size was associated with impaired renal function and increased expression of proinflammatory cytokines and homeostatic chemokines, indicating a possible contribution of TLTs to sustained inflammation after injury. Notably, resident fibroblasts from a single lineage diversified into p75 neurotrophin receptor(+) (p75NTR(+)) fibroblasts and homeostatic chemokine-producing fibroblasts inside TLTs, and retinoic acid-producing fibroblasts around TLTs. Deletion of CD4(+) cells as well as late administration of dexamethasone abolished TLTs and improved renal outcomes. Importantly, aged but not young human kidneys also formed TLTs that had cellular and molecular components similar to those of mouse TLTs. Therefore, the inhibition of TLT formation may offer a novel therapeutic strategy for AKI in the elderly.</p

    Effect of Mukitake mushroom (Panellus serotinus) on the pathogenesis of lipid abnormalities in obese, diabetic ob/ob mice.

    Get PDF
    Background: Various mushrooms have been used in folk medicine for the treatment of lifestyle diseases in eastern countries, and several compounds that modulate the immune system, lower blood lipid levels, and inhibit tumor and viral action have been isolated. The fruiting body of Panellus serotinus (Mukitake) is recognized in Japan as one of the most delicious edible mushrooms, and previous studies have demonstrated that the dietary intake of powdered whole Mukitake or Mukitake extracts prevents the development of non-alcoholic fatty liver disease (NAFLD) in leptin-resistant db/db mice. In the present study, we evaluated the effect of the Mukitake diet on the pathogenesis of metabolic disorders in leptin-deficient ob/ob mice. Results: After 4 weeks of feeding, hepatomegaly, hepatic lipid accumulation, and elevated hepatic injury markers in the serum were markedly alleviated in Mukitake-fed ob/ob mice compared with control mice. Moreover, the mild hyperlipidemia in control ob/ob mice was attenuated and the elevated atherogenic index was reduced in Mukitake-fed ob/ob mice. These effects were partly attributable to the suppression of hepatic lipogenic enzyme activity due to the Mukitake diet. Conclusion: The current results showed that Mukitake supplementation is beneficial for the alleviation of NAFLD and dyslipidemia in obese, diabetic ob/ob mic
    corecore