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Osteocrin ameliorates 
adriamycin nephropathy via p38 
mitogen‑activated protein kinase 
inhibition
Takaya Handa1, Keita P. Mori1,2,3, Akira Ishii1, Shoko Ohno1, Yugo Kanai4, 
Haruko Watanabe‑Takano5, Akihiro Yasoda6, Takashige Kuwabara7, Nobuyuki Takahashi8, 
Naoki Mochizuki5, Masashi Mukoyama7, Motoko Yanagita1,9 & Hideki Yokoi1*

Natriuretic peptides exert multiple effects by binding to natriuretic peptide receptors (NPRs). 
Osteocrin (OSTN) binds with high affinity to NPR-C, a clearance receptor for natriuretic peptides, and 
inhibits degradation of natriuretic peptides and consequently enhances guanylyl cyclase-A (GC-A/
NPR1) signaling. However, the roles of OSTN in the kidney have not been well clarified. Adriamycin 
(ADR) nephropathy in wild-type mice showed albuminuria, glomerular basement membrane changes, 
increased podocyte injuries, infiltration of macrophages, and p38 mitogen-activated protein kinase 
(MAPK) activation. All these phenotypes were improved in OSTN- transgenic (Tg) mice and NPR3 
knockout (KO) mice, with no further improvement in OSTN-Tg/NPR3 KO double mutant mice, 
indicating that OSTN works through NPR3. On the contrary, OSTN KO mice increased urinary albumin 
levels, and pharmacological blockade of p38 MAPK in OSTN KO mice ameliorated ADR nephropathy. 
In vitro, combination treatment with ANP and OSTN, or FR167653, p38 MAPK inhibitor, reduced Ccl2 
and Des mRNA expression in murine podocytes (MPC5). OSTN increased intracellular cyclic guanosine 
monophosphate (cGMP) in MPC5 through GC-A. We have elucidated that circulating OSTN improves 
ADR nephropathy by enhancing GC-A signaling and consequently suppressing p38 MAPK activation. 
These results suggest that OSTN could be a promising therapeutic agent for podocyte injury.

Adriamycin (ADR) is a well-known toxic agent that causes podocyte injury and foot process effacement, fol-
lowing renal injury in rodents. The mechanism of ADR is DNA intercalation and inhibition of macromolecular 
biosynthesis1. ADR-induced nephropathy is an animal model of nephrotic syndrome. ADR-administered mice 
show reduced glomerular cells and mesangial expansion in the kidney, and electron microscopy shows wide 
effacements of foot process and thickening of the basement membrane2. ADR-administered mice also exhibit, 
at early stages, accumulation of macrophage which predicts subsequent disease progression3,4, and upregulation 
of desmin, a podocyte injury marker5. The phenotype of ADR-induced nephropathy depends on the animal 
background. Male BALB/c mice on 129SvJ are susceptible to ADR injection whereas C57BL6/J mice are resist-
ant to ADR injection2. Here, we treated mice with ADR to reveal protective roles of natriuretic peptides (NPs) 
in podocytes.

NPs are hormones that reduce blood pressure, inhibit ventricular hypertrophy, and promote bone growth. The 
mammalian members of NPs are atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), C-type natriu-
retic peptide (CNP), and osteocrin (OSTN)6,7. Three natriuretic peptide receptors (NPRs) have been reported: 
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NPR-1/NPR-A/GC-A, NPR2/NPR-B/GC-B and NPR3/NPR-C. GC-A and GC-B contain guanylyl cyclase domain 
that can synthesize cyclic guanosine monophosphate (cGMP) by ANP and BNP stimulation, whereas NPR-C, 
coded by the NPR3 gene, lacks a guanylyl cyclase domain and works as natriuretic peptide clearance reporter7,8. 
ANP, BNP, and CNP are degraded by binding to NPR-C through internalization followed by lysosomal degrada-
tion. The affinity of NPR-C for NPs is ANP > CNP > BNP in both humans and rats9,10, which may be related to the 
much shorter half-life of plasma ANP than that of BNP. Inactivation of NPR-C has been reported to increase the 
half-life of ANP in circulation by two-thirds in mice, and to show lower blood pressure11. Inactivation of NPR-C 
is also expected to block the degradation of ANP and subsequently to promote GC-A signaling.

GC-A is expressed in the kidney6,12, especially in podocytes as well as in collecting ducts and distal tubules13. 
Since podocyte-specific GC-A knockout (KO) mice with aldosterone, high salt, and uninephrectomy exhibit 
podocyte injury with augmented phosphorylation of p38 mitogen-activated protein kinase (MAPK) and its 
inhibition ameliorates glomerular injury, p38 MAPK is presumed to mediate downstream signaling of GC-A14. 
NPR-C is also expressed in the kidney12,15, however, its role and the cell types expressing it remain unknown.

OSTN is a relatively newly identified peptide in osteoblasts acting a soluble osteoblast regulator16, and is also 
known as musclin, given that another group identified Ostn mRNA expression in skeletal muscles17. It binds with 
high affinity to NP clearance receptor, NPR-C18, and inhibits NP degradation and increases the circulating levels 
of NPs, which bind to GC-A and activate G-protein coupled receptors and peroxisome proliferator-activated 
receptor gamma coactivator 1-α (PGC-1α) pathways19–21. OSTN has multiple effects on various organs. OSTN 
has been shown to strongly affect glucose metabolism in animal models via the inhibition of phosphatidylinosi-
tol 3-kinase (PI3K) and Akt17,22. OSTN also prevents the worsening of congestive heart failure after myocardial 
infarction20 and doxorubicin-induced cardiotoxicity23. OSTN-transgenic mice with elevated circulating levels 
of OSTN showed skeletal overgrowth24, while OSTN knockout mice exhibited shortening of some long bones25. 
ANP6 and BNP26–28 play protective roles in the kidney by directly binding to NPRs in the kidney, but the role of 
OSTN in the kidney has not yet been well elucidated.

In the present study, we investigated the significance of excess circulating OSTN in ADR nephropathy, OSTN 
deficiency in ADR nephropathy, and the mechanism of OSTN using NPR-C KO mice, p38 MAPK inhibitors, 
and cultured podocytes.

Results
Overexpression of OSTN in circulation ameliorates adriamycin nephropathy.  To investigate the 
role of OSTN in podocyte injury, we used ADR nephropathy model, which presents with massive proteinuria 
similar to human minimal change nephropathy. We have previously reported that p38 MAPK plays essential 
roles in ADR nephropathy29, and that GC-A signaling pathway ameliorates podocyte injury and apoptosis via 
p38 MAPK inhibition14. It is reported that p38MAPK mediates upregulation of renal MCP130–33, which is an 
important factor in glomerular injury34,35. We hypothesized that OSTN binds to NPR-C in the kidney, thereby 
enhancing GC-A signaling. We first examined mRNA expression of Ostn. Expression of Ostn in muscle, bone 
and skin (auricle) was more prominent than in brain, lung, liver, whole kidney, glomeruli, spleen, intestine, white 
adipose tissue (WAT), brown adipose tissue (BAT) and testis (Fig. 1a). To determine whether circulating OSTN 
plays a reno-protective role in ADR nephropathy, we used liver-specific driven human serum amyloid-P com-
ponent (SAP) promoter-driven OSTN-transgenic (Tg) mice, which have plasma OSTN levels 2000 times higher 
than control (CT) mice24. We injected ADR or saline (vehicle) into CT or Tg mice at 6 weeks of age (Fig. 1b). We 
confirmed NPR-C colocalized with nephrin, indicating expressed by podocytes (Fig. 1c–g). The BW of Tg mice 
was significantly higher than that of CT mice regardless of ADR or vehicle injection (Fig. 1h), and these finding 
was consistent with previous studies and might be related to bone growth stimulated by OSTN24. There were no 
significant differences in kidney weight, serum creatinine levels (Fig. 1h) or systolic blood pressure (Fig. S1). 
The urinary albumin-to-creatinine ratio (UACR) peaked at 8 weeks of age in ADR-injected CT (ADR CT) mice. 
The UACR in ADR-injected Tg (ADR Tg) mice was significantly lower than that of ADR CT mice at 10 weeks 
of age (Fig. 1i).

The histological findings at 4 weeks after ADR induction are presented in Fig. 2. PAS stain showed no changes 
in glomerular findings between CT and Tg mice regardless of ADR or vehicle injection at 4 weeks after ADR 
administration (Fig. 2a) The positive area of desmin, a marker of podocyte injury, was significantly reduced 
in ADR Tg mice compared to that in ADR-injected CT mice (Fig. 2b,e). Foot process effacements observed 
in ADR CT mice were ameliorated in ADR Tg mice in electron microscopic findings (Fig. 2c,d). Glomerular 
basement membrane (GBM) thickness and width of foot processes were significantly mitigated in ADR Tg mice 
(Fig. 2c,d,f). These histological findings indicated that ADR-induced podocyte injury was improved in Tg mice.

We examined glomerular phosphorylated p38 MAPK by Western blotting, glomerular Ccl2 mRNA expression, 
and MCP1 and MAC-2 by immunostaining to assess inflammation in ADR nephropathy (Fig. 3). Phosphoryl-
ated p38 MAPK in ADR CT mice was significantly upregulated compared to that in vehicle-treated mice, and 
this increase was significantly attenuated in ADR Tg mice (Fig. 3a, Fig. S13a). Glomerular Ccl2 mRNA was 
increased in ADR CT mice compared to that in vehicle-treated CT mice, and this upregulation was tended to 
reduce in ADR Tg mice (Fig. 3b). No difference was observed in the expression of other genes in glomeruli 
(Fig. S2). Immunofluorescent staining showed that MCP1 was upregulated in ADR CT mice, and MCP1 and 
nephrin staining were co-stained in all four groups, indicating that the expression site of MCP1 in glomeruli was 
podocytes (Fig. 3c–e). In addition, the number of MAC-2-positive cell, presumably macrophage, infiltrating into 
glomeruli of ADR CT mice was higher than that of the other three groups (Fig. 3f,g). These findings indicated 
that ADR induced phosphorylation of p38 MAPK, upregulation of Ccl2 and infiltration of MAC-2-positive cells, 
all of which were ameliorated by circulating OSTN.
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Figure 1.   Urinary albumin levels were lower in OSTN-Tg mice than in control mice under ADR nephropathy. 
(a) Expression of Ostn mRNA in various tissues of wild-type mice. Skin (skin of the auricular region). (b) 
Schematic of the experimental protocol. OSTN-Tg or control mice were injected intravenously with saline 
or ADR (8 mg/kg) at 6 weeks of age, and sacrificed at 10 weeks of age. (c) Immunohistochemical study for 
NPR-C. Bars, 20 μm. (d–g) Immunofluorescent studies for NPR-C (d; red), nephrin (e; green), and merged 
images (f,g) in four groups. (d–f) Bars 20 μm, (g) Bars 4 μm. (h) The BW at weeks 5, 6, 7, 8, 9 and 10 and right 
kidney weight, serum creatinine levels at weeks 10 (n = 7–8 per group). *P < 0.05, CT + vehicle vs. Tg + vehicle, 
or CT + ADR vs. OSTN KO + ADR. **P < 0.01, ***P < 0.001 by one-way ANOVA analysis. (i) Urinary 
albumin creatinine ratio (UACR) at weeks 5, 7, 8, 9 and 10 (n = 7–8 per group). Tg 61.9 ± 8.5 μg/mgCr vs. CT 
91.5 ± 33.7 μg/mgCr. BW, body weight; CT, control mice; Tg, OSTN-Tg mice. Data are mean ± SD. *P < 0.05 by 
one-way ANOVA analysis.
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Figure 2.   ADR-induced podocyte injury was ameliorated in OSTN-Tg mice. (a) Light microscopic analysis 
stained with PAS. Bars, 20 μm. (b) Immunohistochemical study for desmin (magnification, × 400). Bars, 20 μm. 
(c,d) Electron microscopic analysis with lower magnification (c; magnification, × 2000, Bars, 10 μm), and higher 
magnification (d; magnification, × 15,000, Bars, 500 nm). (e) Desmin-positive areas were analyzed. ADR Tg 
0.42 ± 0.35 μm2 vs. ADR CT 2.02 ± 0.63 μm2. (f) Thickness of glomerular basement membrane (GBM) and 
width of foot process effacements were measured. GBM thickness: Tg 140.9 ± 13.2 nm vs. CT 208.7 ± 43.1 nm, 
P < 0.001; width of foot process: Tg 268.3 ± 19.3 nm vs. CT 502.7 ± 42.6 nm. PAS periodic acid-Schiff staining, 
EM electron microscopy, CT control mice, Tg OSTN-Tg mice. Data are mean ± SD. ***P < 0.001 by one-way 
ANOVA analysis.
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Systemic deletion of OSTN aggravates adriamycin nephropathy.  Systemic OSTN KO mice were 
similarly injected with ADR to assess the role of circulating OSTN (Fig. 4, Fig. S3), and the BW of OSTN KO 
mice was significantly higher than that of CT mice regardless of ADR or vehicle injection (Fig. S3a). There were 
no significant differences in creatinine levels, but the kidney weight of OSTN KO mice was significantly heavier 
than that of CT mice (Fig. S3a). Systolic blood pressure in ADR OSTN KO mice was significantly higher than 
that in ADR CT mice (Fig. S3b). UACR at 10 weeks of age of ADR-injected OSTN KO (ADR OSTN KO) mice 
were significantly higher than those of ADR CT mice (Fig. 4b). These biological findings indicated that the dele-
tion of circulating OSTN exacerbates ADR-induced albuminuria.

We examined microscopic findings of CT and OSTN KO mice (Fig. S4). There were no differences in glo-
merular PAS stain between CT and OSTN KO mice regardless of ADR (Fig. S4a). Desmin staining area was 

Figure 3.   ADR-induced inflammation was ameliorated in OSTN-Tg mice. (a) Glomerular p38 MAPK 
phosphorylation in four groups at 10 weeks of age. The grouping of gels cropped from the same lines of the 
same gel. Full-length blots/gels are presented in Supplementary Fig. S13a. (b) Glomerular mRNA expression 
levels of Ccl2 in four groups at 10 weeks of age. (c–e) Immunofluorescent studies for MCP1 (c; red), nephrin (d; 
green), and merged images (e) in four groups. (f,g) Immunohistochemical findings of MAC-2 (f), a macrophage 
marker, and the number of MAC-2-positive cells in glomeruli in four groups (g). phospho p38, phosphorylated 
p38 MAPK; CT, control mice; Tg, OSTN-Tg mice. Data are mean ± SD. *P < 0.05, **P < 0.01, ***P < 0.001 by one-
way ANOVA analysis.
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Figure 4.   FR167653, a p38 MAPK inhibitor, reduced ADR-induced albuminuria in OSTN KO mice. (a) 
Schematic of the experimental protocol. OSTN KO or control mice were injected intravenously with saline or 
ADR at 6 weeks of age. CT saline and CT ADR mice were used as reference groups shown in Fig. 1. (b) Urinary 
albumin creatinine ratio at weeks 5, 7, 8, 9 and 10 (n = 5–10 per group). (c) Schematic of the experimental 
protocol. OSTN KO or control mice were treated with FR167653 or vehicle and injected intravenously with 
ADR at 6 weeks of age. CT ADR and OSTN KO ADR mice were used as reference groups shown in Fig. 1 
and Fig. 4a, respectively. (d) The BW at weeks 5, 6, 7, 8, 9 and 10 and right kidney weight, serum albumin, 
serum creatinine levels at 10 weeks of age (n = 6–10 per group). *P < 0.05, CT + V vs. OSTN KO + V, or CT + FR 
vs. OSTN KO + FR. **P < 0.01 by one-way ANOVA analysis. (e) Urinary albumin creatinine ratio at weeks 5, 7, 
8, 9 and 10 (n = 6–10 per group). UACR: OSTN KO 284.8 ± 140.5 μg/mgCr vs. OSTN KO-FR 69.8 ± 8.2 μg/mgCr. 
Data are mean ± SD. *P < 0.05, **P < 0.01 and ***P < 0.001 by one-way ANOVA analysis. BW body weight, V 
vehicle, FR FR167653, CT control mice, OSTN KO OSTN KO mice, UACR​ urinary albumin creatinine ratio.
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increased in ADR CT mice and tended to increase further in ADR OSTN KO mice (Fig. S4b,e). Foot process 
effacements and width of foot processes in ADR OSTN KO mice were similar to those in ADR CT mice in elec-
tron microscopic findings (Fig. S4c,d,f). Glomerular p38 MAPK phosphorylation in ADR OSTN KO mice was 
significantly upregulated compared to that in ADR CT mice, and Ccl2 mRNA expression and MCP1 staining 
in ADR OSTN KO mice tended to increase, but there was no significant difference between ADR CT and ADR 
OSTN KO mice (Fig. S5a,b, Fig. S13d). Other glomerular gene expressions were not significant different between 
ADR CT and ADR OSTN KO mice except for Acta2 and Ostn (Fig. S6). Immunofluorescent staining illustrated 
that nephrin was reduced in ADR OSTN KO mice, and that MCP1 and nephrin staining were merged in these 
mice (Fig. S5c–e). MAC-2-positive cell infiltration was similar between ADR CT and ADR OSTN KO mice 
(Fig. S5f,g). These findings indicated that ADR-induced podocyte injury was observed in OSTN KO mice to the 
same extent as in CT mice. We speculate that plasma concentration of OSTN in CT mice is so low that OSTN 
KO mice exhibit mild changes compared to CT mice.

Inhibition of p38 MAPK mitigates adriamycin nephropathy.  Next, to confirm whether p38 MAPK 
is an essential factor for ADR-induced podocyte injury, we treated CT and OSTN KO mice with FR167653, a 
p38 MAPK inhibitor, to identify whether p38 MAPK was an essential factor in ADR-induced podocyte injury 
(Fig.  4). Figure  4c shows the protocol of ADR CT and OSTN KO mice treated with FR167653. The BW of 
ADR OSTN KO mice was significantly increased compared to that in ADR CT mice regardless of FR treatment 
(Fig. 4d). There were no significant differences in serum creatinine levels, but the kidney weight of OSTN KO 
mice was significantly increased compared to that of CT mice (Fig. 4d). ADR OSTN KO vehicle mice showed 
elevated systolic blood pressure compared to ADR CT vehicle mice, while FR treatment did not change blood 
pressure in ADR OSTN KO mice (Fig. S7). FR167653 significantly reduced UACR in ADR OSTN KO mice at 
10 weeks of age (Fig. 4e).

We examined PAS staining, immunohistochemical study for desmin and electron microscopic data to assess 
podocyte injury morphologically (Fig. S8). There were no differences in glomerular PAS staining between both 
CT and OSTN KO mice regardless of FR167653 (Fig. S8a). The positive area of desmin was significantly reduced 
in the FR treatment groups (Fig. S8b,e). Foot process effacements observed in both ADR CT and ADR OSTN 
KO mice were ameliorated in the FR167653 treatment groups (Fig. S8c,d). The increases in thickening of GBM 
and width of foot process by ADR treatment were significantly mitigated in FR167653-treated groups in both 
CT and OSTN KO mice (Fig. S8f). These histological findings indicated that p38 MAPK inhibition ameliorates 
ADR-induced podocyte injury.

We examined glomerular p38 MAPK phosphorylation, glomerular mRNA expression of Ccl2, and immu-
nostaining of MCP1 and MAC-2 (Fig. S9). Western blotting showed that FR167653 treatment suppressed glo-
merular p38 MAPK phosphorylation in both CT and OSTN KO mice (Fig. S9a, Fig. S13e). FR167653 signifi-
cantly suppressed ADR-induced glomerular Ccl2 mRNA expression (Fig. S9b) and immunofluorescent staining 
of MCP1 in both CT and OSTN KO mice (Fig. S9c). The glomerular mRNA expression of Col1a1, Ctgf, Npr1 
and Npr3 in ADR OSTN KO vehicle mice was significantly decreased by the treatment of FR167653 (Fig. S10). 
Nephrin was recovered in FR167653-treated OSTN KO mice, and MCP1 and nephrin staining colocalized 
in all four groups (Fig. S9c–e). FR167653 significantly ameliorated the infiltration of MAC-2-positive cells in 
glomeruli of CT and OSTN KO mice (Fig. S9f,g). These results suggest that FR167653 inactivates p38 MAPK in 
glomeruli and consequently suppresses Ccl2 expression and MAC-2-positive cell infiltration in both ADR CT 
and ADR OSTN KO mice.

The effects of OSTN is mainly dependent on NPR‑C.  OSTN has been reported to be a selective ligand 
for the clearance receptor, NPR-C, and to consequently enhance NP signaling. To investigate whether podo-
cyte protective effects of circulating OSTN are dependent on NPR-C, we used NPR3 KO mice (Npr3−/−/Ostn+/+ 
mice), double mutant mice carrying the Ostn-transgene depleted of the Npr3 gene (Npr3−/−/OstnTg/+ mice), and 
OSTN-Tg and CT mice, and all four groups were treated with ADR (Fig. 5a). The BW of OSTN-Tg mice was 
higher than that of CT mice, but the gain in BW was decreased in Npr3−/−/OstnTg/+ mice (Fig. 5b). Systolic blood 
pressure was not different among the four groups (Fig. S11). Serum creatinine was significantly higher in NPR3 
KO mice than in control, and this increase was not altered in Npr3−/−/OstnTg/+ mice (Fig. 5b). UACR in ADR CT 
mice peaked at 8 weeks of age, whereas UACR decreased in Tg mice, and tended to decrease in both NPR3 KO 
mice and Npr3−/−/OstnTg/+ mice (Fig. 5c).

We examined PAS staining, immunohistochemical study for desmin and electron microscopic data to assess 
podocyte injury morphologically (Fig. 6). PAS stain showed no differences in glomerular findings in 4 groups 
(Fig. 6a). The positive area of desmin in ADR CT was significantly reduced in other 3 groups (Fig. 6b,e). Foot 
process effacements, thickening of GBM and width of foot process observed in ADR CT were ameliorated in 
other 3 groups (Fig. 6c,d,f). These histological findings indicated that OSTN ameliorates ADR-induced podocyte 
injury via NPR3.

We examined glomerular p38 MAPK phosphorylation, glomerular mRNA expression of Ccl2, and immu-
nostaining of MCP1 and MAC-2 (Fig. 7). Western blotting showed that phosphorylated p38 MAPK in ADR CT 
mice was significantly upregulated compared to that in other 3 groups (Fig. 7a, Fig. S13b). There were no differ-
ences of glomerular Ccl2 mRNA expression and immunofluorescent staining of MCP1 in 4 groups (Fig. 7b–e) 
but MAC2-positive cells per a glomerulus of ADR CT were increased compared to those of ADR NPR3-KO, 
ADR Tg and ADR double mutant (Fig. 7f,g). In NPR3 KO mice, the expression of Col1a1, Fn, Npr1 and Npr2 was 
decreased in glomeruli, regardless of whether or not they carried the OSTN-transgene (Fig. S12). These results 
showed that deletion of NPR3 reduced ADR-induced podocyte injury to the same extent as that in OSTN-Tg 
mice. Additionally, we showed that Npr3−/−/OstnTg/+ mice exhibited phenotypes similar to those of Tg and NPR3 
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KO mice without additive improvement, indicating that the effects of OSTN are mainly dependent on NPR3, 
and enhancement of NP signaling by OSTN suppresses p38 MAPK activation in podocytes.

Activation of GC‑A signaling by OSTN suppresses p38 MAPK, Ccl2 and Des in podocytes.  To 
determine the role of ADR in podocytes in vitro, we stimulated mouse podocytes (MPC5) with ADR. Expression 
of Ccl2 and Des mRNA was upregulated by ADR stimulation in MPC5 dose-dependently (Fig. 8a). Stimulation 
with 10–6 M ANP induced a downward trend of Ccl2 and Des mRNA expression in ADR-treated MPC5, but it 
was not significant; addition of 10–6 M OSTN to 10–6 M ANP significantly suppressed both Ccl2 and Des mRNA 
expression in MPC5 (Fig. 8b), indicating that OSTN has additive effects on inhibition of Ccl2 and Des mRNA 
expression.

Next, to investigate the significance of p38 MAPK inhibition and the mechanism of action of OSTN in 
podocytes, we analyzed the expression of mRNA expression, the intracellular cGMP through GC-A (Npr1), 
and the effects of OSTN on ADR-stimulated MPC5. Western blotting showed that ADR and TNFα stimulation 

Figure 5.   Urinary albumin levels were lower in NPR3 KO mice than in control mice under ADR nephropathy. 
(a) Schematic of the experimental protocol. OSTN-Tg, NPR3 KO, NPR3 KO/OSTN-Tg, or control mice were 
injected intravenously with saline or ADR at 6 weeks of age. CT ADR and Tg ADR mice were used as reference 
groups shown in Fig. 1. (b) The BW at weeks 5, 6, 7, 8, 9 and 10 and serum creatinine levels at 10 weeks of age 
(n = 8–15 per group). ***P < 0.001, OSTN-Tg vs. NPR3 KO, NPR3 KO/OSTN-Tg or control by one-way ANOVA 
analysis. (c) Urinary albumin creatinine ratio at weeks 5, 7, 8, 9, 10 (n = 8–15 per group); CT, control mice; Tg, 
OSTN-Tg mice. Data are mean ± SD. *P < 0.05, by one-way ANOVA analysis.
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Figure 6.   ADR-induced NPR3 KO mice exhibited podocyte protective effects similar to OSTN-Tg mice. 
(a) Light microscopic analysis stained with PAS. Bars, 20 μm. (b) Immunohistochemical study for desmin 
(magnification, × 400). Bars, 20 μm. (c,d) Electron microscopic analysis with lower magnification (c; 
magnification, × 2000, Bars, 10 μm), and higher magnification (d; magnification, × 15,000, Bars, 500 nm). (e) 
Desmin-positive areas were analyzed. (f) Thickness of glomerular basement membrane (GBM) and width of 
foot process effacements were measured. GBM thickness: PAS periodic acid-Schiff, EM electron microscopy, 
CT control mice, Tg OSTN-Tg mice. Data are mean ± SD. *P < 0.05, **P < 0.01, ***P < 0.001 by one-way ANOVA 
analysis.
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upregulated p38 MAPK, and FR1657653 treatment suppressed this increase. ADR and TNFα stimulation also 
increased Des and Ccl2 mRNA expression in MPC5, which was suppressed by FR167653 (Fig. 8c, Fig. S13c). 
OSTN increased intracellular cGMP in MPC5, and this increase was abolished in MPC5 in which GC-A was 
knocked down by siRNA (Fig. 8d). Figure 8e illustrates our proposed mechanism; OSTN binds to NPR-C, a 
NP clearance receptor, and enhances GC-A signaling pathway in podocytes. Activation of the GC-A signaling 
pathway by OSTN suppresses p38 MAPK phosphorylation, which was an important molecule for ADR-induced 
podocytes, downregulates Ccl2 mRNA, and ameliorates podocyte injury (Fig. 8e).

Figure 7.   p38 MAPK phosphorylation in NPR3 KO mice was lower than that of control mice. (a) Glomerular 
p38 MAPK phosphorylation in four groups at 10 weeks of age. The grouping of gels cropped from the same 
lines of the same gel. Full-length blots/gels are presented in Supplementary Fig. S13b. (b) Glomerular mRNA 
expression levels of Ccl2 in four groups at 10 weeks of age. (c–e) Immunofluorescent studies for MCP1 (c; red), 
nephrin (d; green), and merged images (e) in four groups. (f,g) Immunohistochemical findings of MAC-2 (f), 
a macrophage marker, and the number of MAC-2-positive cells in glomeruli in four groups (g). Phospho p38, 
phosphorylated p38 MAPK; CT, control mice; Tg, OSTN-Tg mice. Data are mean ± SD. *P < 0.05, **P < 0.01, 
***P < 0.001 by one-way ANOVA analysis.
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Discussion
In the present study, we investigated the biological and histological findings, gene expression and signaling path-
way including p-38 MAPK among ADR-induced CT, OSTN-Tg, OSTN KO and Npr3−/−/OstnTg/+ mice in vivo. 
In addition, we revealed that OSTN has inhibitory effects on p38 MAPK phosphorylation and Ccl2 expression 
in vitro, indicating that OSTN enhances the GC-A signaling pathway and suppresses ADR-stimulated p38 MAPK 
activation. We presented that OSTN has reno-protective effects on ADR nephropathy.

ADR-induced OSTN-Tg mice reduced UACR, and in contrast, ADR-induced OSTN KO mice increased 
UACR. These results indicated that circulating OSTN ameliorates ADR-induced albuminuria. In addition, UACR 
was decreased in both ADR-induced NPR3 KO and Npr3−/−/OstnTg/+ mice as well as Tg mice. These results 
may be due to the circumstance that OSTN is inactivated in NPR3, a clearance receptor. Electron microscopy 
illustrated that the phenotypes of ADR nephropathy are affected by circulating OSTN. The area of desmin, a 
podocyte injury marker5, in OSTN KO mice was larger than that in CT and Tg mice. In vitro, the expression of 
desmin was upregulated in ADR-stimulated podocytes, which was suppressed by OSTN and ANP treatments, 
indicating that OSTN has a therapeutic effect on ADR-induced podocyte injury.

ADR activates various molecular signals. MCP1 (Ccl2), a cytokine involved in macrophage chemotaxis, has 
been reported to be upregulated in ADR nephropathy by albumin excess in renal tubules2, NFκ-B activation31,36, 
and mononuclear cell infiltration in the kidney35. Recent reports have revealed that MCP1 is increased in focal 
segmental glomerulosclerosis in humans and murine podocytes, and that TNF-α induces MCP1 expression, 
which is an important mediator of ADR-induced nephropathy34. We focused on glomerular mRNA expression of 
Ccl2, MCP1 localization and macrophage infiltration in order to assess inflammatory changes in ADR nephropa-
thy. Glomerular mRNA expression of Ccl2 was suppressed in Tg mice and conversely upregulated in OSTN KO 
mice. Fluorescent immunostaining showed MCP1 and nephrin were colocalized, indicating that MCP1 is mainly 
expressed in podocytes of ADR nephropathy. The intensity of MCP1 immunostaining was strong in OSTN KO 
mice, but weak in Tg mice. In vitro, Ccl2 is upregulated in ADR-stimulated podocytes, which is inhibited by the 
treatment with ANP and OSTN. These results indicate that circulating OSTN suppresses ADR-induced MCP1 
upregulation in podocytes. Macrophage infiltration is one of the phenotypes of ADR-induced nephropathy3,21 
and predictor of subsequent disease progression4. Macrophage infiltration of glomeruli in OSTN KO mice was 
more prominent than that in CT and Tg mice. This is consistent with the results of MCP1 (Ccl2) expression and 
immunostaining.

MCP1 is regulated by p38 MAPK in podocytes30, ADR nephropathy35, murine anti-glomerular base-
ment membrane nephritis31, and acute folate nephropathy33. Inhibition of p38 MAPK ameliorates ADR 
nephropathy29,37. In vitro, p38 MAPK was activated in MPC5 stimulated with TNF-α and ADR, and FR167653 
suppressed its activation. FR167653 suppressed mRNA expression of Ccl2 and Des. Next, we investigated whether 
the podocyte-protective role of circulating OSTN was dependent on p38 MAPK activation. OSTN-Tg mice 
downregulated p38 MAPK phosphorylation in glomeruli, whereas OSTN KO mice upregulated p38 MAPK phos-
phorylation. FR167653-treated CT and OSTN KO mice improved ADR nephropathy phenotypes. These findings 
suggest that circulating OSTN inhibited p38 MAPK activation and consequently ameliorated ADR nephropathy.

OSTN binds with high affinity to NPR-C18, the clearance receptor of NPs, and inhibits degradation of NPs, 
thereby increased circulating NPs enhancing GC-A signaling pathway in endothelial cells20 and myoblasts21. 
OSTN is reported to induce skeletal overgrowth thorough NPR-B/CNP signaling in OSTN-Tg mice24. This 
report is consistent with our findings of the BW in OSTN-Tg mice is higher than CT mice, but the finding that 
the BW of OSTN-KO mice is higher than that of control mice remains unclear. The roles of OSTN in renal cells 
including podocytes are not reported yet. We revealed that OSTN induced intracellular cGMP elevation in podo-
cytes via GC-A. In vivo, we demonstrated that NPR3 KO mice ameliorated ADR nephropathy. These results are 
consistent with the proposed mechanism of protective effects of OSTN on ADR nephropathy. Although ANP 
activates p38 MAPK phosphorylation in adipocytes38, we previously reported that GC-A signaling pathway 
suppresses the activation of p38 MAPK14, and the suppression of p38 MAPK in this ADR nephropathy reduces 
mRNA expression of Ccl2 and ameliorates podocyte injury (Fig. 8e). The difference in p38 MAPK activation by 
NPs may be due to cell types.

In conclusion, we elucidated that the circulating OSTN suppressed p38 MAPK activation in podocytes, and 
that OSTN enhances GC-A signaling, thereby ameliorating ADR nephropathy. Administration of OSTN can be 
a potential therapeutic option for albuminuria.

Methods
Reagents and antibodies.  Adriamycin was obtained from Sigma Aldrich (St. Luis, MO). FR167653, 
p38α MAPK inhibitor, was kindly provided by Astellas Pharma Inc. (Tokyo, Japan). Primary antibodies used 
for immunohistochemical studies and Western blotting were mouse anti-NPR-C (1:100, sc-515449; SantaCruz, 
Dallas, TX), goat anti-nephrin (1:100, AF3159; R&D Systems, Minneapolis, MN), rabbit anti-monocyte chemo-
tactic protein-1 (1:100, ab25124; Abcam, Cambridge, UK), rabbit anti-phospho-p38 MAPK (1:1000, #9211; Cell 
Signaling Technology, Boston, MA), mouse anti-desmin (1:150, M0760; DAKO, Tokyo, Japan), mouse anti-β 
actin (1:1000, A5411; Sigma-Aldrich), and rat anti-MAC-2 (1:100, CL8942F; Cedarlane, CA).

Experimental animals and treatments.  All animal experiments were performed in accordance with 
the Fundamental Guidelines for Proper Conduct of Animal Experiment and Related Activities in Academic 
Research Institution, and were approved by the Animal Experimentation Committee of Kyoto University Gradu-
ate School of Medicine (Approval number; MedKyo 20186) and according to the ARRIVE guidelines39. OSTN-
transgenic (Tg) mice, which express Ostn specifically in the liver under control of the human serum amyloid-P 
(SAP) component promoter have been reported previously24. Systemic Ostn KO25 and Npr3-knockout (NPR3 
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KO) mice11 have been reported previously. These mice were backcrossed with BALB/c mice three times, as they 
were generated on a C57BL/6J background. Control mice (+/+) were also backcrossed with BALB/c mice three 
times from C57BL/6J background. We prepared double mutant mice (Npr3−/−/OstnTg/+ mice) by crossing NPR3 
KO mice and Tg mice. Male mice were used for all experiments.

Saline (vehicle) or ADR was administered to 6-week-old mice at a dose of 8 mg/kg body weight (BW) via 
tail-vein injection. Mice were sacrificed at 4 weeks after ADR injection. FR167653 was administered at a con-
centration of 0.66 mg/mL in drinking water14. Saline- or ADR-administered control mice and OSTN KO mice 
were used as reference groups for all experiments. Urine samples were collected from metabolic cages (Shinano 
Manufacturing, Tokyo, Japan) for 24 h at 5, 7, 8, 9, and 10 weeks of age, and urine volumes were measured. Blood 
and kidney samples were harvested at 10 weeks of age. Urinary albumin levels were measured using the albumin 
ELISA kit (FUJIFILM Wako Shibayagi Corporation, Shibukawa, Japan). Serum creatinine and urinary creatinine 
were measured by enzymatic methods (SRL, Tokyo, Japan).

Renal histology and electron microscopic analysis.  Histological and electron microscopic examina-
tions were performed as described previously40. Periodic acid-Schiff (PAS) stained kidney samples were exam-
ined by light microscopy. Desmin-positive areas were measured using MetaMorph Software (Molecular Devices, 
Sunnyvale, CA)40. Electron microscopic examination was performed using an electron microscope (H-7600, 
Hitachi, Tokyo, Japan)40. We averaged the number of MAC-2-positive cells per 10 glomeruli in each subject. We 
used Photoshop ver. 22.5.1 and Illustrator ver. 25.4.1 as image processing software packages.

Immunofluorescent and immunohistochemical studies.  Immunofluorescent studies for nephrin, 
NPR-C and MCP1 were performed as described previously13. Briefly, cryostat sections were incubated with 
goat anti-nephrin antibody or rabbit anti-MCP1 antibody, and then incubated with fluorescein isothiocyanate 
(FITC)-labeled secondary antibody. Immunohistochemical analysis for NPR-C, desmin, and MAC-2 were as 
previously described with some modifications13.

Cell experiments.  MPC-5 cells, an immortalized mouse podocyte cell line41,42, were used for in vitro exper-
iments. Briefly, MPC-5 cells were cultured with RPMI 1640 medium (Sigma-Aldrich) supplemented with 10% 
fetal bovine serum (FBS; Biowest, Nuaille, France) and interferon-gamma (IFN-γ; PeproTech, Cranbury, NJ) 
before differentiation. MPC-5 cells were differentiated with incubation in IFN-γ (–) media at 37 °C for 2 weeks 
before stimulation. Differentiated podocytes were stimulated with ADR for 24 h and treated with 10–6 M ANP 
(Peptide institute. Inc., Osaka, Japan) and/or 10–6 M OSTN (Phoenix Pharmaceuticals, Inc. Burlingame, CA) and 
then were harvested for RNA analysis. To assess the roles of p38 MAPK in ADR-stimulated MPC5, differentiated 
cells were stimulated with 5.0 μM ADR and 10 ng/mL TNF-α (R&D Systems, Minneapolis, MN) simultaneously 
with 10 μM FR167653 or vehicle for 2 or 24 h, and were then harvested for Western blotting or RNA analysis. 
Differentiated podocytes were transfected with Npr1, or control siRNA using the Nucleofector Kit for MPC5 
(Lonza, Basel, Switzerland) as described previously43. Transfected cells were incubated with 50 mM 3-isobutyl-
1-methylxanthine (IBMX; Nacalai Tesque, Kyoto, Japan) for 20 min and were then treated with 10–6 M OSTN or 
vehicle for 10 min to measure intracellular cGMP concentration using the Cayman ELISA Kit (Ann Arbor, MI).

Glomerular RNA, protein extraction and real‑time RT‑PCR.  Glomeruli were isolated by graded 
sieving methods as described previously13. RNA and protein extraction were performed using AllPrep DNA/
RNA/protein kits (QIAGEN, Hilden, Germany). Quantitative real-time PCR was performed using the StepOne-
Plus System (Thermo Fischer Scientific, Waltham, MA), as descried previously40. Expression levels of Ccl2, Des, 
and Npr1 mRNAs were evaluated. Primer and probe sets were described previously13, and in Table S1.

Figure 8.   OSTN increased intracellular cGMP via GC-A/NPR1 and consequently decreased phosphorylation 
of p38MAPK. (a) MPC5 (mouse podocyte cells) were stimulated by ADR at various concentrations to assess 
mRNA expression of Ccl2 and Des. (b) ADR-stimulated MPC5 were treated by OSTN and ANP to evaluate 
mRNA expression of Ccl2 and Des. (c) Phosphorylation of p38 MAPK at 2 h and mRNA expression of Des 
and Ccl2 at 24 h in MPC5 stimulated with ADR and TNF-α and simultaneously with FR167653 or vehicle. 
The grouping of gels cropped from the same lines of the same gel. Full-length blots/gels are presented in 
Supplementary Fig. S13c. (d) Expression of Npr1 mRNA in MPC5 transfected with Npr1 siRNAs or control 
siRNAs. Intracellular cGMP in MPC5 transfected with Npr1 siRNAs or control siRNAs and subsequently 
treated with OSTN or vehicle. (e) Proposed mechanisms of OSTN-protective roles in ADR-stimulated 
podocytes. NPR-C has no intrinsic enzymatic activity and decreases local concentrations of natriuretic peptides 
through receptor-mediated homeostatic internalization and degradation. OSTN binds to NPR-C with high 
affinity and enhances guanylyl cyclase A (GC-A)/NPR1 signaling in podocytes by inhibiting natriuretic peptide 
degradation. Activation of GC-A leads to the synthesis of cGMP, and the physiological effects of natriuretic 
peptides are mediated by three cGMP-binding proteins: cGMP-dependent protein kinase, cGMP-regulated 
phosphodiesterase, and cyclic nucleotide-dependent ion channel. The physiological effects of natriuretic 
peptides in podocytes inhibit phosphorylation of p38 MAPK, which was an important mediator of ADR-
induced podocyte injury, and downregulate Ccl2 mRNA. As a result, it ameliorates podocyte injury such as 
albuminuria, upregulation of desmin, and loss of foot projections. V, vehicle; A, 10–6 M ANP; OA, 10–6 M OSTN 
and 10–6 M ANP; FR, FR167653. Data are mean ± SD. *P < 0.05, **P < 0.01, ***P < 0.001 by one-way ANOVA 
analysis.
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Western blotting.  Western blotting was performed as previously described13. Filters on isolated cell 
extracts were incubated with rabbit anti-phospho-p38MAPK and mouse anti-β actin antibodies. Immunoblots 
were developed using horseradish peroxidase-linked donkey anti-rabbit or anti-mouse antibodies and a chemi-
luminescent kit.

Statistical analysis.  Values are expressed as the mean ± standard deviation (SD) and were analyzed with 
Graph Prism software (Version 9.00, GraphPad, San Diego, CA). Unpaired Student’s t test was used to compare 
differences between the two groups, whereas comparisons of more than two groups were performed by one-way 
ANOVA with a Tukey post hoc test. Statistical significance was set at P < 0.05.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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