4,573 research outputs found

    Stripe formation in high-Tc superconductors

    Full text link
    The non-uniform ground state of the two-dimensional three-band Hubbard model for the oxide high-Tc superconductors is investigated using a variational Monte Carlo method. We examine the effect produced by holes doped into the antiferromagnetic (AF) background in the underdoped region. It is shown that the AF state with spin modulations and stripes is stabilized du to holes travelling in the CuO plane. The structures of the modulated AF spins are dependent upon the parameters used in the model. The effect of the boundary conditions is reduced for larger systems. We show that there is a region where incommensurability is proportional to the hole density. Our results give a consistent description of stripes observed by the neutron- scattering experiments based on the three-band model for CuO plane.Comment: 8 pages, 9 figure

    Effects of energy dependence in the quasiparticle density of states on far-infrared absorption in the pseudogap state

    Full text link
    We derive a relationship between the optical conductivity scattering rate 1/\tau(\omega) and the electron-boson spectral function \alpha^2F(\Omega) valid for the case when the electronic density of states, N(\epsilon), cannot be taken as constant in the vicinity of the Fermi level. This relationship turned out to be useful for analyzing the experimental data in the pseudogap state of cuprate superconductors.Comment: 8 pages, RevTeX4, 1 EPS figure; final version published in PR

    Fermi arc in doped high-Tc cuprates

    Full text link
    We propose a dd-density wave induced by the spin-orbit coupling in the CuO plane. The spectral function of high-temperature superconductors in the under doped and lightly doped regions is calculated in order to explain the Fermi arc spectra observed recently by angle-resolved photoemission spectroscopy. We take into account the tilting of CuO octahedra as well as the on-site Coulombrepulsive interaction; the tilted octahedra induce the staggered transfer integral between px,yp_{x,y} orbitals and Cu t2gt_{2g} orbitals, and bring about nontrivial effects of spin-orbit coupling for the dd electrons in the CuO plane. The spectral weight shows a peak at around (π/2\pi/2,π/2\pi/2) for light doping and extends around this point forming an arc as the carrier density increases, where the spectra for light doping grow continuously to be the spectra in the optimally doped region. This behavior significantly agrees with that of the angle-resolved photoemissionspectroscopy spectra. Furthermore, the spin-orbit term and staggered transfer effectively induce a flux state, a pseudo-gap with time-reversal symmetry breaking. We have a nodal metallic state in the light-doping case since the pseudogap has a dx2y2d_{x^2-y^2} symmetry.Comment: 5 pages, 7 figure

    Off-diagonal Wave Function Monte Carlo Studies of Hubbard Model I

    Full text link
    We propose a Monte Carlo method, which is a hybrid method of the quantum Monte Carlo method and variational Monte Carlo theory, to study the Hubbard model. The theory is based on the off-diagonal and the Gutzwiller type correlation factors which are taken into account by a Monte Carlo algorithm. In the 4x4 system our method is able to reproduce the exact results obtained by the diagonalization. An application is given to investigate the half-filled band case of two-dimensional square lattice. The energy is favorably compared with quantum Monte Carlo data.Comment: 9 pages, 11 figure

    Fermentation Characteristics of Maize/Sesbania Bi-Crop Silage

    Get PDF
    Maize is one of the main forages for dairy production and is a suitable material for silage making because of high fermentable carbohydrates, high counts of lactic acid bacteria (LAB) and low buffering capacity (BC) (Nishino et al. 2003; McDonald et al. 1991). Whole crop maize silage is high in energy but low in crude protein (CP). On the other hand, legumes are high in CP but difficult to conserve because of their low water soluble carbohydrates (WSC) and high BC. It might be possible that maize/legume bi-crop silage compensate for their negative points. Sesbania is a legume originated in tropical area and might be suitable for inter-crops with maize. Therefore, we investigated the fermentation characteristics of bi-crop silage from maize and sesbania

    Earliest detection of the optical afterglow of GRB 030329 and its variability

    Full text link
    We report the earliest detection of an extremely bright optical afterglow of the gamma-ray burst (GRB) 030329 using a 30cm-telescope at Tokyo Institute of Technology (Tokyo, JAPAN). Our observation started 67 minutes after the burst, and continued for succeeding two nights until the afterglow faded below the sensitivity limit of the telescope (approximately 18 mag). Combining our data with those reported in GCN Circulars, we find that the early afterglow light curve of the first half day is described by a broken power-law (t^{- alpha}) function with indices alpha_{1} = 0.88 +/- 0.01 (0.047 < t < t_{b1} days), alpha_{2} = 1.18 +/- 0.01 (t_{b1} < t < t_{b2} days), and alpha_{3} = 1.81 +/- 0.04 (t_{b2} < t < 1.2 days), where t_{b1} ~ 0.26 days and t_{b2} ~ 0.54 days, respectively. The change of the power-law index at the first break at t ~ 0.26 days is consistent with that expected from a ``cooling-break'' when the cooling frequency crossed the optical band. If the interpretation is correct, the decay index before the cooling-break implies a uniform ISM environment.Comment: 13 pages, 1 table and 2 figures. Accepted to the Astrophysical Journal Letter

    Minimal Trinification

    Full text link
    We study the trinified model, SU(3)_C x SU(3)_L x SU(3)_R x Z_3, with the minimal Higgs sector required for symmetry breaking. There are five Higgs doublets, and gauge-coupling unification results if all five are at the weak scale, without supersymmetry. The radiative see-saw mechanism yields sub-eV neutrino masses, without the need for intermediate scales, additional Higgs fields, or higher-dimensional operators. The proton lifetime is above the experimental limits, with the decay modes p -> \bar\nu K^+ and p -> \mu^+ K^0 potentially observable. We also consider supersymmetric versions of the model, with one or two Higgs doublets at the weak scale. The radiative see-saw mechanism fails with weak-scale supersymmetry due to the nonrenormalization of the superpotential, but operates in the split-SUSY scenario.Comment: 23 pages, uses axodra

    Hybridization-Driven Orthorhombic Lattice Instability in URu2Si2

    Get PDF
    We have measured the elastic constant (C11-C12)/2 in URu2Si2 by means of high-frequency ultrasonic measurements in pulsed magnetic fields H || [001] up to 61.8 T in a wide temperature range from 1.5 to 116 K. We found a reduction of (C11-C12)/2 that appears only in the temperature and magnetic field region in which URu2Si2 exhibits a heavy-electron state and hidden-order. This change in (C11-C12)/2 appears to be a response of the 5f-electrons to an orthorhombic and volume conservative strain field \epsilon_xx-\epsilon_yy with {\Gamma}3-symmetry. This lattice instability is likely related to a symmetry-breaking band instability that arises due to the hybridization of the localized f electrons with the conduction electrons, and is probably linked to the hidden-order parameter of this compound.Comment: 5 pages, 4 figure

    Ground state of the three-band Hubbard model

    Full text link
    The ground state of the two-dimensional three-band Hubbard model in oxide superconductors is investigated by using the variational Monte Carlo method. The Gutzwiller-projected BCS and spin- density wave (SDW) functions are employed in the search for a possible ground state with respect to dependences on electron density. Antiferromagnetic correlations are considerably enhanced near half-filling. It is shown that the d-wave state may exist away from half-filling for both the hole and electron doping cases. The overall structure of the phase diagram obtained by the calculations qualitatively agrees with experimental indications. The superconducting condensation energy is in reasonable agreement with the experimental value obtained from specific heat and critical magnetic field measurements for optimally doped samples. The inhomogeneous SDW state is also examined near 1/8-hole doping.Comment: 10 pages, 17 figure
    corecore