10 research outputs found

    Solar infrared radiation towards building energy efficiency: measurement, data, and modeling

    No full text
    With the recent discoveries and engineering solutions emerging in nanomaterials and nanostructures, independent band modulation of solar radiation on building envelopes, including glazing systems, has become increasingly viable as a potential means of improving building energy savings and indoor visual comfort. However, when it comes to the prediction of these new materials’ potential energy performance in buildings, most studies utilize a simple solar irradiance (e.g., global horizontal solar irradiance, direct beam solar irradiance) or a rough estimation of solar infrared (e.g., 50% solar irradiance) as input, which may cause significant errors. Consequently, there is a pressing need for reliable performance estimations of the solar infrared control and response at the building’s scale. To assess this, we need a solar spectral irradiance model, or at least a wideband (visible or infrared) solar irradiance model, as input. To develop this new type of model, one needs to understand the modeling-related key elements, including available solar spectral irradiance datasets, data collection methods, and modeling techniques. As such, this paper reviews the current major measurement methods and tools used in collecting solar spectral irradiance data with a focus on the solar infrared region, identifies the available related resources and datasets that particularly encompass the solar spectral irradiance data with a sufficient wavelength range, and studies existing solar irradiation modeling techniques for building simulations. These investigations will then form the background and backbone for a study scheme of solar infrared radiation modeling and indicate future research paths and opportunities.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Experimental study on microstructure and heating characteristics of water-soaked and air-dried bituminous coal

    No full text
    In order to study the microstructure and heating characteristics of water-soaked air-dried bituminous coal, the bituminous coal samples from a coal mine in Shaanxi Province were selected. Using low temperature liquid nitrogen adsorption instrument and thermogravimetric analyzer, the specific surface area, pore volume and thermogravimetric and derivative thermogravimetric tests were carried out on the coal samples soaked for 30 days, 60 days and 90 days and raw coal samples after constant temperature drying at 25 ℃ for 72 h. The influence mechanism of long-term soaking and air-drying on the physical characteristics and activation energy of bituminous coal during heating process was explored. The results show that the specific surface area and total pore volume of coal samples change with the increase of soaking time. After soaking for 90 days and drying, the contribution proportion of micropore contrast surface area and total pore volume was the largest, and the contribution proportion was larger than that of other pore sizes. It is speculated that the coal sample soaked in water for 90 days after drying, the faster the coal oxygen reaction rate, the higher the coal spontaneous combustion tendency. In the process of heating up, the characteristic temperature difference and characteristic temperature point change of coal samples at different soaking time are different

    Impact of the channel length on molybdenum disulfide field effect transistors with hafnia-based high- k dielectric gate

    Get PDF
    International audienceField effect transistors (FETs) using two-dimensional molybdenum disulfide (MoS 2) as the channel material has been considered one of the most potential candidates for future complementary metal-oxide-semiconductor technology with low power consumption. However, the understanding of the correlation between the device performance and material properties, particularly for devices with scaling-down channel lengths, is still insufficient. We report in this paper back-gate FETs with chemical-vapor-deposition grown and transferred MoS 2 and Zr doped HfO 2 ((Hf,Zr)O 2 , HZO) high-k dielectric gates with channel lengths ranging from 10 to 30 ÎŒm with a step of 5 ÎŒm. It has been demonstrated that channels with the length to width ratio of 0.2 lead to the most superior performance of the FETs. The MoS 2 /HZO hybrid FETs show a stable threshold voltage of ∌1.5 V, current on/off ratio of >10 4 , and field effect mobility in excess of 0.38 cm 2 V −1 s −1. The impact of the channel lengths on FET performance is analyzed and discussed in depth. A hysteresis loop has been observed in the I ds − Vgs characteristics of the hybrid FETs, which has been further studied and attributed to the charge effect at the interfaces. The HZO films show a relatively weak ferroelectric orthorhombic phase and thus serve mainly as the high-k dielectric gate. Charge trapping in the HZO layer that might induce hysteresis has been discussed. Our results show that MoS 2 /HZO hybrid FETs possess great potential in future low power and high-speed integrated circuits, and future work will focus on further improvement of the transistor performances using ferroelectric HZO films and the study of devices with even shorter MoS 2 channels

    Highly heterogeneous epitaxy of flexoelectric BaTiO3-ÎŽ membrane on Ge

    No full text
    The integration of complex oxides with a wide spectrum of functionalities on Si, Ge and flexible substrates is highly demanded for functional devices in information technology. We demonstrate the remote epitaxy of BaTiO3 (BTO) on Ge using a graphene intermediate layer, which forms a prototype of highly heterogeneous epitaxial systems. The Ge surface orientation dictates the outcome of remote epitaxy. Single crystalline epitaxial BTO3-ÎŽ films were grown on graphene/Ge (011), whereas graphene/Ge (001) led to textured films. The graphene plays an important role in surface passivation. The remote epitaxial deposition of BTO3-ÎŽ follows the Volmer-Weber growth mode, with the strain being partially relaxed at the very beginning of the growth. Such BTO3-ÎŽ films can be easily exfoliated and transferred to arbitrary substrates like Si and flexible polyimide. The transferred BTO3-ÎŽ films possess enhanced flexoelectric properties with a gauge factor of as high as 1127. These results not only expand the understanding of heteroepitaxy, but also open a pathway for the applications of devices based on complex oxides
    corecore