716 research outputs found

    Robust piecewise adaptive control for an uncertain semilinear parabolic distributed parameter systems

    Get PDF
    In this study, we focus on designing a robust piecewise adaptive controller to globally asymptotically stabilize a semilinear parabolic distributed parameter systems (DPSs) with external disturbance, whose nonlinearities are bounded by unknown functions. Firstly, a robust piecewise adaptive control is designed against the unknown nonlinearity and the external disturbance. Then, by constructing an appropriate Lyapunov–Krasovskii functional candidate (LKFC) and using the Wiritinger’s inequality and a variant of the Agmon’s inequality, it is shown that the proposed robust piecewise adaptive controller not only ensures the globally asymptotic stability of the closed-loop system, but also guarantees a given performance. Finally, two simulation examples are given to verify the validity of the design method

    Adverse event detection by integrating twitter data and VAERS

    Get PDF
    Background: Vaccinehasbeenoneofthemostsuccessfulpublichealthinterventionstodate.However,vaccines are pharmaceutical products that carry risks so that many adverse events (AEs) are reported after receiving vaccines. Traditional adverse event reporting systems suffer from several crucial challenges including poor timeliness. This motivates increasing social media-based detection systems, which demonstrate successful capability to capture timely and prevalent disease information. Despite these advantages, social media-based AE detection suffers from serious challenges such as labor-intensive labeling and class imbalance of the training data. Results: Totacklebothchallengesfromtraditionalreportingsystemsandsocialmedia,weexploittheircomplementary strength and develop a combinatorial classification approach by integrating Twitter data and the Vaccine Adverse Event Reporting System (VAERS) information aiming to identify potential AEs after influenza vaccine. Specifically, we combine formal reports which have accurately predefined labels with social media data to reduce the cost of manual labeling; in order to combat the class imbalance problem, a max-rule based multi-instance learning method is proposed to bias positive users. Various experiments were conducted to validate our model compared with other baselines. We observed that (1) multi-instance learning methods outperformed baselines when only Twitter data were used; (2) formal reports helped improve the performance metrics of our multi-instance learning methods consistently while affecting the performance of other baselines negatively; (3) the effect of formal reports was more obvious when the training size was smaller. Case studies show that our model labeled users and tweets accurately. Conclusions: WehavedevelopedaframeworktodetectvaccineAEsbycombiningformalreportswithsocialmedia data. We demonstrate the power of formal reports on the performance improvement of AE detection when the amount of social media data was small. Various experiments and case studies show the effectiveness of our model

    Competitive Online Peak-Demand Minimization Using Energy Storage

    Full text link
    We study the problem of online peak-demand minimization under energy storage constraints. It is motivated by an increasingly popular scenario where large-load customers utilize energy storage to reduce the peak procurement from the grid, which accounts for up to 90%90\% of their electric bills. The problem is uniquely challenging due to (i) the coupling of online decisions across time imposed by the inventory constraints and (ii) the noncumulative nature of the peak procurement. In this paper, we develop an optimal online algorithm for the problem, attaining the best possible competitive ratio (CR) among all deterministic and randomized algorithms. We show that the optimal CR can be computed in polynomial time, by solving a linear number of linear-fractional problems. More importantly, we generalize our approach to develop an \emph{anytime-optimal} online algorithm that achieves the best possible CR at any epoch, given the inputs and online decisions so far. The algorithm retains the optimal worst-case performance and achieves adaptive average-case performance. Simulation results based on real-world traces show that, under typical settings, our algorithms improve peak reduction by over 19%19\% as compared to baseline alternatives

    Grape: Knowledge Graph Enhanced Passage Reader for Open-domain Question Answering

    Full text link
    A common thread of open-domain question answering (QA) models employs a retriever-reader pipeline that first retrieves a handful of relevant passages from Wikipedia and then peruses the passages to produce an answer. However, even state-of-the-art readers fail to capture the complex relationships between entities appearing in questions and retrieved passages, leading to answers that contradict the facts. In light of this, we propose a novel knowledge Graph enhanced passage reader, namely Grape, to improve the reader performance for open-domain QA. Specifically, for each pair of question and retrieved passage, we first construct a localized bipartite graph, attributed to entity embeddings extracted from the intermediate layer of the reader model. Then, a graph neural network learns relational knowledge while fusing graph and contextual representations into the hidden states of the reader model. Experiments on three open-domain QA benchmarks show Grape can improve the state-of-the-art performance by up to 2.2 exact match score with a negligible overhead increase, with the same retriever and retrieved passages. Our code is publicly available at https://github.com/jumxglhf/GRAPE.Comment: Findings of EMNLP202

    Clinical Outcomes of Endoscopic Submucosal Dissection for Early Esophageal Squamous Cell Neoplasms: A Retrospective Single-Center Study in China

    Get PDF
    Aims. To retrospectively analyze the clinical outcomes for a large number of endoscopic submucosal dissections (ESDs) in early esophageal squamous cell neoplasms (ESCNs) at the First Affiliated Hospital of Nanjing Medical University. Patients and Methods. From January 2010 to February 2014, 296 patients (mean age 61.4 years, range 31–85 years; 202 men) with 307 early ESCNs (79 intramucosal invasive esophageal squamous cell carcinomas (ESCCs) and 228 high-grade intraepithelial neoplasia (HGIN) cases) were included from a total of 519 consecutive patients who were treated by esophageal ESD at our hospital. The primary end points of the study were rates of en bloc resection and complete resection. Secondary end points were complications, residual and recurrence rates, and mortality during follow-up. Results. The en bloc resection rate and complete resection rate were 93.5% and 78.2%, respectively. Complications included strictures (8.4%), perforations (1.0%), and bleedings (0.7%). Twenty-seven (9.1%) patients experienced residual and 18 (6.1%) patients experienced recurrence during a mean follow-up period of 30 months. Thirteen patients died from causes unrelated to ESCC, and no cancer-related death was observed. Conclusions. Our study showed that ESD is a successful and relatively safe treatment for intramucosal invasive ESCC and HGIN, fulfilling the criteria of lymph node negative tumors. This should encourage clinicians to select ESD performed by experienced operators as a potential or even preferred treatment option for lesions amenable to endoscopic treatment

    1,3-Dibenz­yloxy-5-(bromo­meth­yl)benzene

    Get PDF
    In the title compound, C21H19BrO2, the dihedral angles between the central benzene ring and the two peripheral rings are 50.28 (5) and 69.75 (2)°. The O—CH2 bonds lie in the plane of the central ring and adopt a syn–anti conformation

    Immune Landscape of Invasive Ductal Carcinoma Tumor Microenvironment Identifies a Prognostic and Immunotherapeutically Relevant Gene Signature

    Get PDF
    Background: Invasive ductal carcinoma (IDC) is a clinically and molecularly distinct disease. Tumor microenvironment (TME) immune phenotypes play crucial roles in predicting clinical outcomes and therapeutic efficacy. Method: In this study, we depict the immune landscape of IDC by using transcriptome profiling and clinical characteristics retrieved from The Cancer Genome Atlas (TCGA) data portal. Immune cell infiltration was evaluated via single-sample gene set enrichment (ssGSEA) analysis and systematically correlated with genomic characteristics and clinicopathological features of IDC patients. Furthermore, an immune signature was constructed using the least absolute shrinkage and selection operator (LASSO) Cox regression algorithm. A random forest algorithm was applied to identify the most important somatic gene mutations associated with the constructed immune signature. A nomogram that integrated clinicopathological features with the immune signature to predict survival probability was constructed by multivariate Cox regression. Results: The IDC were clustered into low immune infiltration, intermediate immune infiltration, and high immune infiltration by the immune landscape. The high infiltration group had a favorable survival probability compared with that of the low infiltration group. The low-risk score subtype identified by the immune signature was characterized by T cell-mediated immune activation. Additionally, activation of the interferon-α response, interferon-γ response, and TNF-α signaling via the NFκB pathway was observed in the low-risk score subtype, which indicated T cell activation and may be responsible for significantly favorable outcomes in IDC patients. A random forest algorithm identified the most important somatic gene mutations associated with the constructed immune signature. Furthermore, a nomogram that integrated clinicopathological features with the immune signature to predict survival probability was constructed, revealing that the immune signature was an independent prognostic biomarker. Finally, the relationship of VEGFA, PD1, PDL-1, and CTLA-4 expression with the immune infiltration landscape and the immune signature was analyzed to interpret the responses of IDC patients to immunotherapy. Conclusion: Taken together, we performed a comprehensive evaluation of the immune landscape of IDC and constructed an immune signature related to the immune landscape. This analysis of TME immune infiltration landscape has shed light on how IDC respond to immunotherapy and may guide the development of novel drug combination strategies

    Partial response to trastuzumab deruxtecan (DS8201) following progression in HER2-amplified breast cancer with pulmonary metastases managed with disitamab vedotin (RC48): a comprehensive case report and literature review

    Get PDF
    Breast cancer remains one of the predominant malignancies worldwide. In the context of inoperable advanced or metastatic human epidermal growth factor receptor 2 (HER2)-positive breast cancer, systemic management primarily relies on HER2-targeting monoclonal antibodies. With the successful development of anti-HER2 antibody-drug conjugates (ADCs), these agents have been increasingly integrated into therapeutic regimens for metastatic breast cancer. Here, we present the case of a 42-year-old female patient with HER2-positive pulmonary metastatic breast cancer who underwent an extensive treatment protocol. This protocol included chemotherapy, radiation therapy, hormonal therapy, surgical intervention on the breast, and anti-HER2 therapies. The anti-HER2 therapies involved both singular and dual targeting strategies using trastuzumab and the ADC disitamab vedotin (RC48) over an 8-year period. After experiencing disease progression following HER2-targeted therapy with RC48, the patient achieved noticeable partial remission through a therapeutic regimen that combined trastuzumab deruxtecan (DS8201) and tislelizumab. The data suggest a promising role for DS8201 in managing advanced stages of HER2-amplified metastatic breast cancer, especially in cases that demonstrate progression after initial HER2-directed therapies using ADCs. Furthermore, its combination with anti-PD-1 agents enhances therapeutic efficacy by augmenting the anti-tumoral immune response
    corecore